DISEÑO DE UNA MÁQUINA PARA LA PRODUCCIÓN DE ALMIDÓN HÚMEDO DE SAGÚ EN PUENTE QUETAME CUNDINAMARCA

JENNIFER JOHANA ABAD ARELLANO JORGE ANDRES PARDO CLAVIJO

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA MECÁNICA BOGOTÁ D.C. 2020

DISEÑO DE UNA MÁQUINA PARA LA PRODUCCIÓN DE ALMIDÓN HÚMEDO DE SAGÚ EN PUENTE QUETAME CUNDINAMARCA

JENNIFER JOHANA ABAD ARELLANO JORGE ANDRES PARDO CLAVIJO

Proyecto integral de grado para optar por el título de: INGENIERO MECÁNICO

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA MECÁNICA BOGOTÁ D.C. 2020

Nota de aceptación:
Ing. Miguel Alfonso Morales Granados
Ing. Homber Cuize School
Ing. Hember Guiza Sabogal

Bogotá D.C. Agosto de 2020

DIRECTIVAS DE LA UNIVERSIDAD

Presidente de la Universidad y F	Rector del Claustro
----------------------------------	---------------------

Dr. MARIO POSADA GARCÍA PEÑA

Consejero Institucional

Dr. LUIS JAIME POSADA GARCÍA PEÑA

Vicerrectora Académica y de Investigaciones

Dra. MARÍA CLAUDIA APONTE GONZÁLEZ

Vicerrector Administrativo y Financiero

Dra. RICARDO ALFONSO PEÑARANDA CASTRO

Decano General Facultad de Ingenierías

Ing. JULIO CÉSAR FUENTES ARISMENDI

Director de Investigaciones

Ing. LUIS FERNANDO SÁNCHEZ HUERTAS

Director del Departamento de Ingeniería Mecánica

Ing. CARLOS MAURICIO VELOZA VILLAMIL

Las directivas de la Universidad de América, los jurados calificadores y el cuerpo docente no son responsables por los criterios e ideas expuestas en el presente documento.
Estas corresponden únicamente a los autores.
5

DEDICATORIA

Quiero dedicar este proyecto principalmente a Dios y la Virgen por ser mi guía, a mis hermanas por su apoyo y amor incondicional brindado durante estos años, por sus palabras, sus consejos y por la paciencia, ¡Las amo!, a mi madre por su comprensión, amor, apoyo y por ser la base de mi formación, a mi compañero de proyecto, por su amor, dedicación, motivación, apoyo incondicional en momentos difíciles que se nos presentarón, paciencia y gracias por que a pesar de que fue un proyecto difícil, logramos salir adelante.

Tambien a las personas y amigos, que me apoyaron, asesoraron y acompañaron en este proceso tan importante en mi vida, mil gracias.

Jennifer Johana Abad Arellano

Dedico este proyecto con profundo amor a la memoria de mi padre (Q.E.P.D), quien me apoyo y sustento durante toda mi formación hasta donde Dios le permitió, siendo Ingeniero Mecánico estoy cumpliendo uno de sus más grandes sueños, a Dios por ser mi guía, a mi madre por su compresión, entrega, apoyo incondicional y motivación para vencer la adversidad, a mis hermanos quienes me inspiraron día a día a seguir sus pasos para convertirme en un gran profesional y quienes me han acompañado a lo largo de mi vida en los buenos y no tan buenos momentos, a mi compañera de proyecto por su pasión, entrega e insaciable paciencia, gracias por ayudarme a cumplir este y más triunfos como equipo.

Gracias a cada uno de ellos por ser testigos y participantes del trabajo constante adelantado para lograr este nuevo éxito.

"Desde el cielo una estrella me vera triunfar"

Jorge Andrés Pardo Clavijo

CONTENIDO

	Pág.
RESUMEN	24
INTRODUCCIÓN	26
1. PLANTA DE SAGÚ Y ESTADO ACTUAL DE LA MÁQUINARIA	28
1.1 GENERALIDADES	28
1.1.1 Planta de Sagú.	28
1.2 DESCRIPCIÓN DEL PROCESO	30
1.2.1 Recolección del tubérculo de Sagú (Cosecha).	31
1.2.2 Lavado del tubérculo.	32
1.2.3 Rallado del tubérculo.	33
1.2.4 Tamizado.	35
1.2.5 Decantación y lavados repetidos.	36
1.2.6 Secado.	37
1.3 MÁQUINARIA Y MODO DE PRODUCCIÓN EN LA ACTUALIDAD	39
1.3.1 Perú.	39
1.3.2 Ecuador.	39
1.3.3 China y Vietnam.	40
1.3.4 Colombia.	41
1.4 REQUERIMIENTOS Y PARAMETROS GENERALES DE DISEÑO	58
1.4.1 Requerimientos.	58
1.4.2 Parámetros funcionales	58
1.4.3 Parámetros generales de diseño.	58
2. DISEÑO METODOLÓGICO Y ALTERNATIVAS DE SOLUCIÓN	64
2.1 DISEÑO METODOLÓGICO	64
2.1.1 Proceso para la producción de almidón húmedo de Sagú y funcionamiento general.	64

2.1.2 Modo funcional de la máquina.	64
2.2 SISTEMAS QUE COMPONEN LA MÁQUINA	67
2.2.1 Sistema estructural.	68
2.2.2 Sistema de transmisión de potencia.	68
2.2.3 Sistema de control.	68
2.2.4 Sistema de lavado y extracción de impurezas.	68
2.2.5 Sistema de rallado del tubérculo.	74
2.2.6 Sistema de tamizado del almidón.	79
3. DISEÑO DETALLADO DE LA MÁQUINA	86
3.1 DISEÑO DEL SISTEMA DE LAVADO	86
3.1.1 Diseño y dimensionamiento de la tolva de alimentación.	87
3.1.2 Cálculo y dimensionamiento del Cilindro rotatorio.	98
3.1.3 Selección de las ruedas que soportan el Cilindro.	116
3.1.4 Selección de boquillas de aspersión.	124
3.1.5 Selección de tuberías.	131
3.1.6 Selección de la Bomba.	135
3.1.7 Cálculo y Selección del tanque de suministro de agua.	162
3.1.8 Rejilla retenedora de impurezas.	164
3.1.9 Batea recolectora de agua.	164
3.1.10 Diseño estructural del Sistema de Lavado.	165
3.1.11 Sistema de transmisión de potencia	182
3.1.11.4 Tensión de la correa.	202
3.1.12 Selección de tornillos.	206
3.1.13 Acrílicos.	209
3.2 DISEÑO DEL SISTEMA DE RALLADO	211
3.2.1 Diseño y dimensionamiento de la tolva de alimentación.	212
3.2.2 Diseño y dimensionamiento del Cilindro rallador.	220
3.2.3 Sistema de transmisión de potencia.	232
3.2.4 Diseño estructural del sistema de rallado.	274
3.2.5 Acrílico para tolva ralladora.	286

3.3 SISTEMA DE TAMIZADO	287
3.3.1 Transportador Helicoidal.	287
3.3.3 Selección de las tapas de la artesa.	301
3.3.4 Selección de rodamientos en la tapa de la artesa.	303
3.3.5 Selección de la descarga.	305
3.3.6 Diseño del recolector de almidón húmedo de Sagú.	306
3.3.7 Dimensionamiento del acrílico que cubre la artesa.	307
3.3.8 Selección de entrada del material.	307
3.3.9 Tubo dispensador de agua.	308
3.3.10 Selección de ejes del sistema de tamizado.	309
3.3.11 Deflexión del Transportador Helicoidal.	312
3.3.12 Potencia requerida del transportador helicoidal.	313
3.3.13 Dimensionamiento y cálculos de la tolva de alimentación.	324
3.3.14 Diseño estructural del sistema de tamizado.	332
3.3.15 Selección de tornillos	341
3.4 SISTEMA DE CONTROL	342
3.4.1 Elementos de entrada y salida del PLC.	344
3.4.2 Programación del PLC.	344
3.5 Máquina para la producción de almidón húmedo de Sagú.	346
4. MANUALES DE LA MÁQUINA	347
4.1 MANUAL DE MONTAJE	347
4.1.1 Montaje Del Sistema De Lavado.	348
4.1.2 Montaje del Sistema De Rallado.	359
4.1.3 Montaje del Sistema De Tamizado.	366
4.2 MANUAL DE OPERACIÓN	374
4.2.1 Pre operación de la máquina	375
4.2.2 Operación de la máquina.	375
4.2.3 Detención de la máquina.	377
4.3 MANUAL DE SEGURIDAD	379
4.3.1 Factores de riesgo y medidas de mitigación.	380

4.4 MANUAL DE MANTENIMIENTO	382
5. ESTUDIO DE IMPACTO AMBIENTAL Y COSTOS DE FABRICACIÓN	390
5.1 ESTUDIO DE IMPACTO AMBIENTAL	390
5.1.1 Método matriz de Leolpold.	390
5.1.2 Elementos de la matriz de Leolpold	390
5.1.3 Evaluación del impacto en la matriz.	391
5.1.4 Interpretación de la matriz.	393
5.1.5 Medidas de mitigación de los impactos.	393
5.2 COSTOS DE FABRICACIÓN DE LA MÁQUINA	394
5.2.1 Costos de Ingeniería.	394
5.2.2 Costos de materiales.	394
5.2.3 Costos de Fabricación.	398
5.2.4 Costos totales de diseño y fabricación de la máquina.	398
6. CONCLUSIONES	399
7. RECOMENDACIONES	400
BIBLIOGRAFÍA	401
ANEXOS	409

LISTA DE CUADROS

Cuadro 1. Máquinas de lavado y extracción de impurezas	55
Cuadro 2. Máquinas de rallado	56
Cuadro 3. Máquinas de tamizado	57
Cuadro 4. Parámetros de diseño sistema de lavado del tubérculo	59
Cuadro 5. Parámetros de diseño sistema de rallado del tubérculo	61
Cuadro 6. Parámetros de diseño sistema de Tamizado del almidón	62
Cuadro 7. Requerimientos del usuario sistema de lavado y extracción de impurezas	69
Cuadro 8. Requisitos técnicos del diseño sistema de lavado y extracción de impurezas	70
Cuadro 9. Matriz QFD Sistema de lavado del tubérculo	73
Cuadro 10. Requerimientos del usuario sistema de rallado del tubérculo	74
Cuadro 11. Requisitos técnicos del diseño sistema de rallado del tubérculo	75
Cuadro 12. Matriz QFD Sistema de rallado del tubérculo	78
Cuadro 13. Requerimientos del usuario sistema de tamizado del almidón	79
Cuadro 14. Requisitos técnicos del diseño sistema de tamizado del almidón	80
Cuadro 15. Matriz QFD Sistema de tamizado del almidón	84
Cuadro 16. Diseño metodológico de acuerdo a las alternativas seleccionadas	85
Cuadro 17. Masa de los elementos que soportan los elementos estructurales críticos	275
Cuadro 18. Elementos que soportan las vigas críticas.	333
Cuadro 19. Implementos de seguridad en el manejo de maquinaria	379
Cuadro 20. Clasificación de riesgos según su factor	380
Cuadro 21. Inspecciones a los elementos de la máquina.	383
Cuadro 22. Fallas en los elementos de la maquina	387
Cuadro 23. Matriz de Leolpold	392

LISTA DE TABLAS

Tabla 1. Valores de coeficientes de fricción	89
Tabla 2. Elementos correas trapeciales	102
Tabla 3. Propiedades del Agua	139
Tabla 4. Resistencias de accesorios expresada en Le/D	144
Tabla 5. Factor de fricción en zona turbulenta de tuberías comerciales	145
Tabla 6. Valores aproximados para el coeficiente de resistencia K	150
Tabla 7. Factor de longitud efectiva K	171
Tabla 8. Capacidad de transmisión por canal	192
Tabla 9. Dimensiones de poleas comerciales	193
Tabla 10. Factor de corrección por longitud de la correa	199
Tabla 11. Fuerza de deflexión en correas	205
Tabla 12. Capacidad de transmisión por canal 3V	237
Tabla 13. Propiedades del acero AISI 1040	252
Tabla 14. Factores de confiabilidad	261
Tabla 15. Diámetros en cada punto del eje del sistema de rallado	266
Tabla 16. Tamaño de cuñas	266
Tabla 17. Duración de diseño recomendada para rodamientos	272
Tabla 18. Factor del diámetro del transportador	315
Tabla 19. Factor del buje para colgante	316
Tabla 20. Factor del helicoidal Ff	317
Tabla 21. Factor de paleta Fp	318
Tabla 22. Factor de sobrecarga	319
Tabla 23. Factor de eficiencia de las transmisiones	319
Tabla 24. Entradas y Salidas del PLC	343
Tabla 25. Perfiles del sistema de lavado	349
Tabla 26. Perfiles del sistema de rallado	360
Tabla 27. Perfiles del sistema de tamizado	367
Tabla 28. Costos de ingeniería	394
Tabla 29. Costos de materiales	394
Tabla 30. Costos de fabricación	398
Tabla 31. Costos totales	398

LISTA DE FIGURAS

Figura 1. Cultivo de Sagú Vereda el Herrero	28
Figura 2. Tubérculo de Sagú	29
Figura 3. Hoja de la planta de Sagú	29
Figura 4. Flor de Sagú	30
Figura 5. Diagrama de flujo de las etapas del proceso de producción	30
Figura 6. Cultivo de Sagú momento óptimo de cosecha	31
Figura 7. Tubérculo de Sagú con alto contenido de almidón	32
Figura 8. Lavado manual del tubérculo	32
Figura 9. Lavadora Mecánica rudimentaria Vereda el Herrero	33
Figura 10. Lavadora Mecánica rudimentaria Fosca	33
Figura 11. Rallado manual (CRECED, sur del Huila)	34
Figura 12. Ralladora mecánica para achira diseñada por CORPOICA	34
Figura 13. Ralladora Mecánica rudimentaria Vereda el Herrero	35
Figura 14. Tamizado manual	35
Figura 15. Tamizadora Mecánica Fosca	36
Figura 16. Albercas de decantación, Fosca	36
Figura 17. Artesas de decantación Vereda el Herrero	37
Figura 18. Invernadero para el secado del almidón, Fosca	37
Figura 19. Secado del almidón al aire libre	38
Figura 20. Etapas del proceso de producción de almidón húmedo de Sagú	39
Figura 21. Línea de procesamiento de tubérculos	40
Figura 22. Maquinaria para la producción de almidón Vereda el Herrero	41
Figura 23. Lavadora Mecánica rudimentaria Vereda el Herrero	42
Figura 24. Transmisión de potencia lavadora mecánica Vereda el Herrero	42
Figura 25. Ralladora Mecánica rudimentaria Vereda el Herrero	44
Figura 26. Tamizador horizontal de Paletas Vereda el Herrero	44
Figura 27. Transmisión de potencia ralladora y tamiz Vereda el Herrero	45
Figura 28. Maquinaria para la producción de almidón Vereda San Antonio	47
Figura 29. Lavadora Mecánica rudimentaria Fosca	48
Figura 30. Ralladora Mecánica rudimentaria Fosca	49
Figura 31. Tamizadora Mecánica Fosca	50
Figura 32. Lavadora mecánica CORPOICA	51
Figura 33. Ralladora mecánica para achira diseñada por CORPOICA	52
Figura 34. Ralladora mecánica para achira CORPOICA	53
Figura 35. Tamiz hexagonal CORPOICA	54
Figura 36. Tamiz CORPOICA de flujo continuo	54
Figura 37. Lavadora de cepillos por inmersión	71
Figura 38. Lavadora rotativa por aspersión	71
Figura 39. Lavadora flujo continuo por aspersión	72
Figura 40. Ralladora de un rodillo	76
Figura 41. Ralladora de un rodillo con inclinación	76

Figura 4	12. Ralladora de doble rodillo	77
Figura 4	43. Tamiz tornillo sin fin	81
Figura 4	14. Tamiz vertical en cascada	82
Figura 4	45. Tamiz cilindro rotatorio o centrifuga	83
Figura 4	16. Sistema de lavado de la máquina	87
Figura 4	47. Tolva de alimentación sistema de lavado y extracción de impurezas	88
Figura -	18. Dimensiones generales de la tolva de alimentación	91
Figura -	19. Tronco pirámide irregular	92
Figura :	50. Verificación volumen de la tolva Solid Edge ST10	93
Figura	51. Dimensiones generales de la pared de área de contacto de la tolva	94
Figura :	52. Información del tipo de malla para la respectiva simulación	96
Figura	53. Cargas y apoyos en la tolva del sistema de lavado	96
Figura	54. Desplazamiento en la tolva sistema de lavado	97
Figura	55. Tensión de Von Misses en la tolva sistema de lavado	97
Figura	56. Factor de seguridad en la tolva sistema de lavado	98
_	57. Cilindro rotatorio del sistema de lavado	98
•	58. Porcentaje de llenado del cilindro	100
•	59. Dimensiones y ubicación de las ranuras del Cilindro	105
_	60. Dimensiones aro guía	107
_	61. Carga de Tubérculos de Sagú sobre el Cilindro	111
_	62. Carga distribuida de tubérculos de Sagú sobre el Cilindro	112
_	63. Carga puntual de Tubérculos y ubicación sobre el Cilindro	113
_	64. Información del tipo de malla para la respectiva simulación	114
_	55. Desplazamiento del Cilindro sistema de lavado	115
•	66. Tensión de Von Misses en el Cilindro sistema de lavado	115
_	67. Factor de seguridad en el Cilindro sistema de lavado	116
_	68. Ruedas de Soporte del sistema de lavado	116
•	69. Densidad del Acero inoxidable 304 Software Solid Edge	118
_	70. Masa del aro guía software Solid Edge	119
_	71. Ubicación de los aros guía en el Cilindro de lavado	121
_	72. Diagrama de cuerpo libre del Cilindro de lavado	121
•	73. Reacciones en las ruedas de soporte	123
_	74. Especificaciones generales del tipo de rueda de soporte seleccionada	124
•	75. Proyección flauta aspersora con tres boquillas	124
_	76. Especificaciones generales del tipo de boquilla seleccionada	126
•	77. Cobertura de aspersión en el Cilindro de lavado	126
•	78. Acercamiento zona de cálculo	127
_	79. Altura de aspersión en el Cilindro de lavado	129
_	30. Herramienta SprayWare Calculadora de cobertura de aspersión	130
_	31. Boquillas de aspersión del cilindro de lavado	131
_	32. Tubería seleccionada Catálogo PAVCO	134
Figura	33. Dimensiones y ubicación de tuberías y accesorios del Sistema de lavado	135

Figura 84. Valores de coeficientes de rugosidad	140
Figura 85. Coeficientes de resistencia en la entrada	143
Figura 86. Perdidas en accesorios	146
Figura 87. Codo estándar de 90°	148
Figura 88. Codo estándar de 45°	149
Figura 89. Curva característica de Bomba agrícola	153
Figura 90. Diámetros normalizados Catalogo PAVCO	154
Figura 91. Coeficientes de resistencia K en accesorios	161
Figura 92. Tanque de suministro de agua	164
Figura 93. Batea recolectora de agua	165
Figura 94. Cargas en la estructura del Sistema de lavado	166
Figura 95. Diagrama de cuerpo libre de la viga de la estructura del Sistema de Lavado	167
Figura 96. Diagrama de Fuerza Cortante y Momento Flector	167
Figura 97. Especificaciones generales del Perfil Cuadrado seleccionado	169
Figura 98. Espesor de lámina seleccionado Catalogo Aceromex	176
Figura 99. Desplazamiento de la estructura sistema de lavado	177
Figura 100. Tensión de Von Misses en la estructura sistema de lavado	177
Figura 101. Factor de seguridad en la estructura sistema de lavado	178
Figura 102. Factores geométricos	179
Figura 103. Tamaños de soldadura	182
Figura 104. Factor de servicio	190
Figura 105. Factor de corrección por ángulo de contacto	198
Figura 106. Aplicación del motor reductor	201
Figura 107. Factor de servicio	202
Figura 108. Especificaciones generales del Motor reductor seleccionado	202
Figura 109. Vistas del sistema de tensado de la correa	203
Figura 110. Tramo medio de la correa	203
Figura 111. Guarda correa Lavadora	205
Figura 112. Masa de la tolva de alimentación del sistema de lavado	206
Figura 113. Tornillos seleccionados	207
Figura 114. Valores del límite elástico y de la resistencia a tracción ultima de tornillos	208
Figura 115. Acrílico protector sistema de lavado	210
Figura 116. Sistema de rallado de la máquina	211
Figura 117. Tolva de alimentación sistema de rallado	212
Figura 118. Proyección del volumen de los tubérculos de Sagú en el cilindro	213
Figura 119. Dimensiones generales de la tolva de alimentación sistema de rallado	214
Figura 120. Volumen de la tolva de alimentación Solid Edge	216
Figura 121. Dimensiones generales de la pared de área de contacto de la tolva	217
Figura 122. Información del tipo de malla para la respectiva simulación	218
Figura 123. Cargas y apoyos en la tolva sistema de rallado	218
Figura 124. Desplazamiento en la tolva sistema de rallado	219
Figura 125. Tensión de Von Misses en la tolva sistema de rallado	219

Figura	126.	Factor de seguridad en la tolva sistema de rallado	220
Figura	127.	Cilindro de Rallado	220
Figura	128.	Dimensiones generales del Cilindro Rallador	221
Figura	129.	Troquelado óptimo de lámina ralladora	222
Figura	130.	Área de contacto de los tubérculos - cilindro rallador	224
Figura	131.	Base para el cilindro de rallado	230
Figura	132.	Espacio entre la tolva y el cilindro rallador	231
Figura	133.	Tapa para tolva del sistema de rallado	231
Figura	134.	Especificaciones del Motor seleccionado sistema de rallado	233
•		Factores de servicio típicos en máquinas	234
Figura	136.	Perfil de correas de alta capacidad	235
_		Dimensiones de poleas comerciales 3V	239
Figura	138.	Factor de corrección por ángulo de contacto	242
•		Factor de corrección por longitud de banda	242
•		Vistas del rodillo tensor de la ralladora	243
•		Fuerza de deflexión en correas	245
•		Brazo rotativo estándar para tensión de correas	245
•			246
•		Rodillo tenor seleccionado	246
•			247
_		Eje del sistema de rallado	248
•		Fuerzas sobre poleas	249
_		'	251
_		Componentes de la polea del sistema de rallado	251
•		, , ,	253
•		· ,	253
_		Diagrama de cuerpo libre del eje plano X-Z	255
_		•	255
•		Diagrama de fuerza cortante y momento flector del plano X-Z	256
_			256
•		Reacciones en el eje Y en los rodamientos	257
_		Diagrama de fuerza cortante y momento flector del plano Y-Z	257
_		Resistencia a la fatiga en función de la resistencia a la tensión	260
•		Factor por tamaño	261
_		Especificaciones generales del rodamiento seleccionado Catalogo SKF	273
_			
•			276
_		Diagrama de cuerpo libre viga de la estructura del Sistema de rallado	277
•		Diagrama de Fuerza cortante y Momento flector	277
•		Desplazamiento en la estructura sistema de rallado	282
_		Tensión de Von Misses en la estructura del sistema de rallado	282
rigura	167.	Factor de seguridad en la estructura del sistema de rallado	283

Figura	168.	Acrílico tolva de la ralladora	286
Figura	169.	Sistema de tamizado de la máquina	287
Figura	170.	Código del material CEMA	288
Figura	171.	Código del material CEMA para el rallado de tubérculos de Sagú	289
Figura	172.	Capacidades para transportadores helicoidales horizontales	291
Figura	173.	Características de los materiales	293
Figura	174.	Grupo de componentes 2	294
Figura	175.	Estructura del código del transportador helicoidal	294
Figura	176.	Transportador helicoidal del sistema de tamizado	295
Figura	177.	Características dimensionales del transportador helicoidal seleccionado	296
Figura	178.	Sección transversal del helicoidal continuo	296
Figura	179.	Dimensionamiento del helicoidal continuo	297
Figura	180.	Especificaciones y peso Lb del transportador helicoidal	297
Figura	181.	Sentido de giro del transportador helicoidal	298
Figura	182.	Tamaño de tubo, dimensiones y peso	298
Figura	183.	Artesa en "U"	299
Figura	184.	Artesas estándar CEMA dimensionamiento	300
Figura	185.	Estructura del código de la artesa seleccionada	300
Figura	186.	Artesa del sistema de tamizado	301
Figura	187.	Tapa de artesa exterior con pie seleccionada	301
Figura	188.	Estructura del código de la tapa de la artesa	302
Figura	189.	Patrón de barrenos	302
Figura	190.	Tapa de artesa del sistema de tamizado	303
Figura	191.	Rodamientos de bola en tapa seleccionado	304
Figura	192.	Rodamiento de la tapa de artesa sistema de tamizado	304
Figura	193.	Descarga estándar sencilla dimensionamiento	305
Figura	194.	Estructura del código de la descarga y peso Lb	305
Figura	195.	Descarga del sistema de tamizado	306
Figura	196.	Recolector de Almidón Húmedo de Sagú	306
Figura	197.	Acrílico cubre artesa del sistema de tamizado	307
Figura	198.	Dimensionamiento de la entrada del material	308
Figura	199.	Tubo dispensador de agua del sistema de tamizado	309
Figura	200.	Dimensionamiento del eje motriz seleccionado	310
Figura	201.	Eje motriz del sistema de tamizado	310
Figura	202.	Dimensionamiento del eje terminal seleccionado	311
Figura	203.	Eje terminal del sistema de tamizado	311
Figura	204.	Inercia del transportador helicoidal	313
Figura	205.	Torque de los componentes del transportador helicoidal	321
Figura	206.	Aplicaciones de motores	322
•		Factor de servicio de motor reductores	323
_		Especificaciones del motor reductor seleccionado sistema de tamizado	323
Figura	209.	Especificaciones del acople de transmisión de potencia seleccionado	324

Figura 210.	Tolva del sistema de tamizado	325
Figura 211.	Dimensiones generales de la tolva de alimentación sistema de tamizado	326
Figura 212.	Tronco pirámide regular	327
Figura 213	Volumen de la tolva de alimentación Solid Edge	328
Figura 214.	Información del tipo de malla para la respectiva simulación	330
Figura 215.	Cargas y apoyos en la tolva sistema de tamizado	330
Figura 216.	Desplazamiento de la tolva sistema de tamizado	331
Figura 217.	Tensión de Von Misses en la tolva sistema de tamizado	331
Figura 218.	Factor de seguridad de la tolva sistema de tamizado	332
Figura 219.	Carga en la estructura del sistema de tamizado	334
Figura 220.	Diagrama de cuerpo libre viga de la estructura del sistema de tamizado	335
Figura 221.	Diagrama de fuerza cortante y momento flector	335
Figura 222.	Desplazamiento en la estructura del sistema de tamizado	339
Figura 223.	Tensión Von Misses en la estructura del sistema de tamizado	340
Figura 224.	Factor de seguridad de la estructura de tamizado	340
Figura 225.	Tornillos estandarizados de los rodamientos en la tapa	341
Figura 226.	Panel de Control de la máquina	342
Figura 227.	Conexiones del PLC	343
Figura 228.	Programación del PLC	344
•	Circuito de Potencia	345
Figura 230.	Máquina para la producción de almidón húmedo de Sagú	346
Figura 231.	Dimensionamiento máquina	347
_	Unión de los perfiles sistema de lavado	348
•	Paso a paso del ensamble de la estructura del sistema de lavado	350
•	Ensamble de la tolva sistema de lavado	352
•	Ensamble de las ruedas de soporte	352
_	Ensamble de elementos en el cilindro de lavado	353
•	Ensamble del cilindro de lavado	353
_	Ensamble de la Batea recolectora de agua	354
_	Ensamble de la Bomba	354
•	Ensamble de la tubería de succión	355
_	Ensamble del tanque de suministro de agua	355
•	Ensamble de la tubería de desagüe	356
_	Ensamble de la tubería de descarga	356
_	Ensamble del sistema de aspersión	357
•	Ensamble de la placa tensora y el motor reductor	357
•	Ensamble del sistema de transmisión de potencia	358
•	Ensamble del guarda correa	358
•	Soldadura perfiles sistema de rallado	359
_	Paso a paso del ensamble de la estructura del sistema de rallado	361
•	Ensamble de la tolva del sistema de rallado	362
Figura 251.	Ensamble de elementos en el eje	362

Figura 252. Ensamble de los rodamientos	363
Figura 253. Ensamble de la tapa para tolva	363
Figura 254. Ensamble de Motor	364
Figura 255. Ensamble del sistema de transmisión de potencia	364
Figura 256. Ensamble del tensor y el guarda correa	365
Figura 257. Soldadura perfiles sistema de tamizado	366
Figura 258. Paso a paso del ensamble de la estructura del sistema de tamizado	368
Figura 259. Ensamble de las tapas de artesa	369
Figura 260. Ensamble del recolector de almidón húmedo de Sagú	369
Figura 261. Ensamble de la descarga	370
Figura 262. Ensamble de la artesa del tamiz	370
Figura 263. Ensamble del transportador helicoidal	371
Figura 264. Ensamble de los rodamientos de pared	371
Figura 265. Ensamble del acrílico cubre artesa	372
Figura 266. Ensamble de la tolva de alimentación sistema de tamizado	372
Figura 267. Ensamble del Motor reductor	373
Figura 268. Ensamble del tubo dispensador de agua	373
Figura 269. Proceso de operación de la máquina	374
Figura 270. Indicadores Led del Panel de Control apagados	375
Figura 271. Switch energizado en la posición 1	376
Figura 272. Botón de encendido del Panel de Control	376
Figura 273. Indicadores Led del Panel de Control encendidos	376
Figura 274. Switch energizado en la posición 0	377
Figura 275. Indicadores Led del Panel de Control encendidos	377
Figura 276. Disyuntores del panel de control	378
Figura 277. Elementos de la matriz	390

LISTA DE ECUACIONES

Ecuación 1. Relación de transmisión de potencia	43
Ecuación 2. Volumen.	88
Ecuación 3. Ángulo de inclinación de la tolva	90
Ecuación 4. Volumen de un tronco pirámide irregular	92
Ecuación 5. Área de contacto	94
Ecuación 6. Fuerza	95
Ecuación 7. Volumen de un tambor rotacional	100
Ecuación 8. Diámetro exterior del cilindro	102
Ecuación 9. Volumen de un Cilindro	103
Ecuación 10. Tiempo de la etapa de lavado	106
Ecuación 11. Masa de tubérculos en el Cilindro	107
Ecuación 12. Área lateral de un Cilindro	108
Ecuación 13. Área de la base de un Cilindro	108
Ecuación 14. Área total de un Cilindro	108
Ecuación 15. Área de contacto tubérculos – Cilindro	109
Ecuación 16. Fuerza sobre el Cilindro	110
Ecuación 17. Carga distribuida	111
Ecuación 18. Carga puntual	112
Ecuación 19. Fuerza Centrifuga	113
Ecuación 20. Masa del Cilindro de lavado	117
Ecuación 21. Volumen del Cilindro de lavado hueco	117
Ecuación 22. Carga total en el Cilindro de lavado	120
Ecuación 23.Teorema de Pitágoras	127
Ecuación 24. Cobertura de aspersión en el Cilindro de lavado	128
Ecuación 25. Altura de aspersión en el Cilindro de lavado	128
Ecuación 26. Número de boquillas de aspersión	130
Ecuación 27. Rapidez de flujo de volumen o caudal	132
Ecuación 28. Ecuación general de la energía	136
Ecuación 29. Darcy - Weisbach	137
Ecuación 30. Flujo laminar	138
Ecuación 31. Flujo turbulento	138
Ecuación 32. Número de Reynolds	138
Ecuación 33. Perdidas Menores por accesorios	142
Ecuación 34. Coeficiente de Resistencia	142
Ecuación 35. NPSH de la Bomba	152
Ecuación 36. Caudal	163
Ecuación 37. Esfuerzo Normal por Flexión	168
Ecuación 38. Relación de Esbeltez	170
Ecuación 39. Arriostramiento	172

Ecuación 40. Esfuerzo critico de Pandeo	173
Ecuación 41. Resistencia de diseño	173
Ecuación 42. Carga por Flexión	178
Ecuación 43. Cortante directo	179
Ecuación 44. Carga total de la soldadura	180
Ecuación 45. Longitud requerida para el hilo de soldadura	181
Ecuación 46. Potencia requerida	182
Ecuación 47. Momento torsor del cilindro de lavado	183
Ecuación 48. Momento de Inercia de un cilindro hueco	183
Ecuación 49. Momento de inercia de un paraboloide	184
Ecuación 50. Aceleración angular del cilindro de lavado	187
Ecuación 51. Velocidad angular	187
Ecuación 52. Potencia de diseño	189
Ecuación 53. Relación de velocidades poleas	191
Ecuación 54. Distancia entre centros recomendada	194
Ecuación 55. Relación de distancias nominales entre centros	194
Ecuación 56. Longitud de paso	195
Ecuación 57. Distancia entre centros de poleas	195
E cuación 58. Ángulo de contacto	196
Ecuación 59. Número de bandas	197
Ecuación 60. Potencia corregida	197
Ecuación 61. Torque	200
Ecuación 62. Longitud del tramo medio de la correa	204
Ecuación 63. Resistencia a la cortante del tornillo	208
Ecuación 64. Área de un circulo	209
Ecuación 65. Número de tubérculos en el cilindro rallador	223
Ecuación 66. Área de contacto tubérculos - cilindro rallador	224
Ecuación 67. Fuerza total del cilindro rallador	225
Ecuación 68. Esfuerzo normal en el cilindro rallador	225
Ecuación 69. Esfuerzo permisible	226
Ecuación 70. Resistencia de fluencia en cortante	227
Ecuación 71. Esfuerzo cortante por torsión	228
Ecuación 72. Torque del cilindro rallador	228
Ecuación 73. Momento polar de inercia de un cilindro hueco	229
Ecuación 74. Potencia	232
Ecuación 75. Relación de velocidades RPM	236
Ecuación 76. Número de canales	238
Ecuación 77. Relación de velocidades angulares	238
Ecuación 78. Par torsional	248
Ecuación 79. Fuerza impulsadora neta	249
Ecuación 80. Fuerza flexionante	250
Ecuación 81. Diseño de ejes	258

Ecuación 82. Resistencia a la fatiga real estimada	259
Ecuación 83. Longitud de cuña	267
Ecuación 84. Altura de la cuerda	268
Ecuación 85. Profundidad del cuñero en el eje	269
Ecuación 86. Profundidad del cuñero en el cubo	269
Ecuación 87. Capacidad de carga dinámica básica	271
Ecuación 88. Duración de diseño en revoluciones	272
Ecuación 89. Capacidad requerida del transportador helicoidal	290
Ecuación 90. Velocidad del transportador helicoidal	292
Ecuación 91. Deflexión del transportador helicoidal	312
Ecuación 92. Potencia para mover el transportador vacío	314
Ecuación 93. Potencia para mover el material	314
Ecuación 94. Potencia total	314
Ecuación 95. Torque del transportador helicoidal	320
Ecuación 96. Volumen tubérculos rallados de Sagú	325

GLOSARIO

ALMIDÓN HÚMEDO: También conocido como Lechada de Almidón, es el almidón en suspensión en el agua de colado, se obtiene como producto principal en la etapa de tamizado y como subproducto se obtiene el afrecho¹.

COSECHA: Proceso de extraer la planta de la tierra una vez completa su ciclo de maduración².

CULTIVO: Es el proceso en el cual se siembra semillas en la tierra para obtener distintos frutos³.

TUBÉRCULO: Es la parte de la planta que se desarrolla internamente en la tierra⁴, el cual almacena nutrientes, agua, entre otros.

¹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

² ADMINDEFINCA. Cosecha de productos agrícolas. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://www.fincaycampo.com/2015/08/cosecha-de-productos-agricolas/

³ ECURED. Cultivo. [Sitio web]. [consultado el 6 abril, de 2020]. Disponible en: https://www.ecured.cu/Cultivo

⁴ FRUTASOLIVAR. ¿Qué es un tubérculo? ¿Qué tipos hay? ¿Cuáles son sus propiedades?. [Sitio web]. [consultado el 6 abril, de 2020]. Disponible en: https://frutasolivar.com/que-es-un-tuberculo-que-tipos-hay-cuales-son-sus-propiedades/

RESUMEN

El siguiente proyecto se basa en el diseño de una máquina para la producción de almidón húmedo de Sagú en puente Quetame Cundinamarca con el fin de cumplir los requerimientos establecidos por los pequeños productores del municipio donde se buscó aumentar la producción y calidad del almidón húmedo de Sagú, que causa el proceso rudimentario y artesanal que efectúan actualmente.

Primero se realizó un diagnóstico sobre la situación actual con respecto a la maquinaria utilizada en la producción de almidón de Sagú, con el fin de conocer como se ha contrarrestado la problemática presentada en distintos lugares cultivadores y productores de Sagú, se realizaron visitas a lugares donde se ejecuta este proceso de producción de forma mecánica, con el fin de identificar parámetros de diseño.

Luego de establecer las especificaciones y parámetros de diseño, se realizó un diseño conceptual y se plantearon 3 alternativas de solución que satisfagan los parámetros antes encontrados, proponiendo criterios y haciendo una comparación a través de una matriz QFD, la cual permitió escoger la alternativa más viable y que dé solución al problema propuesto.

Después de definir la alternativa de solución, se procede a realizar el diseño detallado de los componentes que conforman la máquina.

Posteriormente se elaboran los respectivos manuales de:

- Montaje; donde se muestra al usuario de manera concisa el debido procedimiento para montar, desmontar, mantener o poner en funcionamiento la máquina.
- Operación; se dan a conocer las actividades necesarias para realizar las correspondientes secuencias de operación de la máquina.
- Seguridad; Se identifican los factores de riesgo que pueden afectar la salud del usuario y se implementan medidas para minimizar los accidentes en el manejo de la máquina.
- Mantenimiento; Se identifican los elementos de la máquina, sus posibles fallas e inspecciones correspondientes para un correcto mantenimiento.

Por último, se realizó un estudio ambiental, donde se identificó el impacto que el proyecto pueda ocasionar y se establecieron alternativas de mitigación, también se realizó un análisis de costos, en donde se hizo una estimación de los componentes, materiales y fabricación de la máquina.

Palabras clave: Diseño, Almidón húmedo de Sagú, Proceso de producción de almidón.

ABSTRACT

The following project is based on the design of a machine for the production of Sagú wet starch in Puente Quetame Cundinamarca in order to meet the requirements established by the small producers of the municipality where it was sought to increase the production and quality of Sagú wet starch, which causes the rudimentary and artisanal process that they currently carry out.

First, a diagnosis was made on the current situation with respect to the machinery used in the production of Sagú starch, in order to know how the problems presented in different cultivators and producers of Sagú have been counteracted, visits were made to places where this production process is executed mechanically, in order to identify design parameters.

After establishing the specifications and design parameters, a conceptual design was carried out and 3 solution alternatives were proposed that satisfy the parameters previously found, proposing criteria and making a comparison through a QFD matrix, which allowed choosing the most viable alternative and that gives solution to the proposed problem.

After defining the alternative solution, we proceed to carry out the detailed design of the components that make up the machine.

Subsequently, the respective manuals of:

- Assembly; where the user is shown in a concise manner the proper procedure to assemble, disassemble, maintain or put the machine into operation.
- Operation; The activities necessary to carry out the corresponding operating sequences of the machine are disclosed.
- Security; Risk factors that can affect the health of the user are identified and measures are implemented to minimize accidents when handling the machine.
- Maintenance; The elements of the machine, their possible failures and corresponding inspections for proper maintenance are identified.

Finally, an environmental study was carried out, where the impact that the project could cause was identified and mitigation alternatives were established, a cost analysis was also carried out, where an estimate of the components, materials and manufacture of the machine was made.

Keywords: Design, Sago wet starch, Starch production process.

INTRODUCCIÓN

El departamento de Cundinamarca se identifica por ser uno de los cultivadores de Sagú en Colombia, este cuenta con municipios productores de gran importancia como lo son; Puente Quetame, Guayabetal, Fosca, Gutiérrez, Caqueza, Fomeque, Choachi, Une, Pasca, Ubaque, entre otros.

Actualmente en el municipio de Puente Quetame para la producción de este almidón se lleva a cabo un proceso manual que puede estar acompañado de ciertas herramientas rudimentarias dependiendo de la etapa, situación que demanda más tiempo, esfuerzo de mano de obra, altos costos de producción, ausencia de control de calidad y mayor probabilidad de riesgos laborales, ocasionando que, al finalizar el ejercicio, la relación costo beneficio no sea eficiente.

El diseño de una máquina para la producción de almidón húmedo de Sagú la cual busca mejorar, las falencias antes mencionadas.

el tiempo de producción del almidón, el esfuerzo que requiere la mano de obra, la calidad del producto, los riesgos laborales que causa el uso inadecuado de las herramientas y un control en el proceso.

Con esto se incrementará la economía de los pequeños productores de Sagú, generando rentabilidad y empleos directos e indirectos, debido a la demanda del producto, impulsando a la industrialización siendo una producción competitiva, mejorando la calidad de vida, en cuanto a beneficio para las familias productoras, como para los consumidores que lo adquieran debido a sus componentes saludables y nutricionales.

Con la realización de este proyecto se desea disminuir el uso de los recursos ambientales y la utilización de residuos del proceso, como una alternativa para diferentes usos positivos, y así no tener grandes afectaciones al entorno.

El proyecto contempla como objetivo general Diseñar una máquina para la producción de almidón húmedo de Sagú en Puente Quetame Cundinamarca.

Para lograrlo se requiere cumplir los siguientes objetivos específicos:

- Realizar un diagnóstico de la situación actual con respecto a la maquinaria utilizada en la producción de almidón de Sagú, para la identificación de parámetros y términos generales de diseño.
- Realizar el diseño metodológico de la máquina y establecer alternativas de solución.
- Realizar el diseño detallado de los componentes que conforman la máquina.

- Elaborar los respectivos manuales de montaje, operación, seguridad y mantenimiento.
- Elaborar un estudio de: impacto ambiental y costos de fabricación.

El alcance de este proyecto es realizar el diseño de una máquina para la producción de almidón húmedo de Sagú, la cual realice única y exclusivamente las etapas de:

- Lavado y extracción de impurezas del tubérculo
- Rallado del tubérculo
- Tamizado del almidón

Se realizará el diseño detallado de los componentes que conforman la máquina, sus correspondientes planos de fabricación, y se desarrollarán los respectivos cálculos que respalden el diseño efectuado.

Se elaborarán los manuales de montaje, operación, seguridad y mantenimiento, un estudio de impacto ambiental y un análisis de costos con respecto a la máquina.

1. PLANTA DE SAGÚ Y ESTADO ACTUAL DE LA MÁQUINARIA PARA LA PRODUCCIÓN DE SU ALMIDÓN HÚMEDO

1.1 GENERALIDADES

1.1.1 Planta de Sagú. Según CORPOICA⁵, el sagú es una planta de origen andino también llamada Achira (Canna Edulis, Ker) se cultiva principalmente para la extracción de su almidón o fécula presente en el tubérculo, la cual es utilizada para la producción de alimentos como bizcochos de Achira, Pan de Sagú, bizcochuelo, medicina artesanal, entre otros.

La planta tiene raíces las cuales se encuentran ubicadas en el tubérculo, el tamaño que tiene generalmente este tubérculo en pleno desarrollo es de 5 a 15 cm de largo y 4 a 10 cm de ancho, tiene hojas enteras de color verde oscuro por la superficie y por su parte interna un verde más claro, algunas veces da una flor de color rojo.⁶

Figura 1. Cultivo de Sagú Vereda el Herrero

Fuente: Elaboración propia

⁵ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

⁶ibíd., p. 4.

Figura 2. Tubérculo de Sagú

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

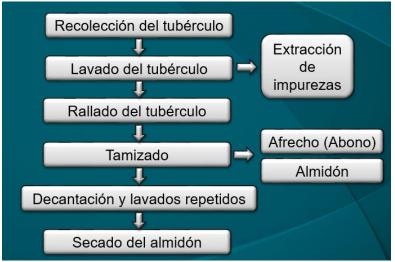
http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Figura 3. Hoja de la planta de Sagú

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Figura 4. Flor de Sagú



CORPORACIÓN **COLOMBIANA** DE INVESTIGACIÓN AGROPECUARIA. Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstre am/11348/3744/1/Almidon%20de%20achir a%20o%20sagu.pdf

1.2 DESCRIPCIÓN DEL PROCESO DE PRODUCCIÓN DE ALMIDÓN DE SAGÚ

Para la obtención del almidón de Sagú ubicado en su tubérculo, es necesario seguir un proceso de extracción, está compuesto por las siguientes etapas:

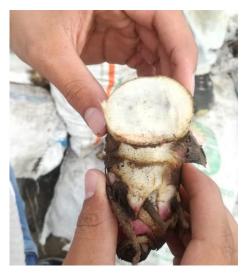
Figura 5. Diagrama de flujo de las etapas del proceso de producción de almidón de Sagú Recolección del tubérculo

Fuente: Elaboración propia.

1.2.1 Recolección del tubérculo de Sagú (Cosecha). Determinar cuál es el tiempo preciso para la cosecha de los tubérculos es uno de los puntos claves para obtener una buena producción del almidón, los agricultores manifiestan una técnica visual que tienen para saber el punto donde el tubérculo tiene mayor almidón, es cuando la hoja del Sagú está quemada a su alrededor, sin embargo, esto varía según el tipo de suelo, clima, entre otros, por lo general se hace por su tiempo de cosecha estimado de 10 a 11 meses en el departamento de Cundinamarca.

cosecha

Figura 6. Cultivo de Sagú momento óptimo de


Fuente: Elaboración propia.

Según los agricultores, se sabe que el tubérculo tiene buen almidón si en su interior se ve un color negro o azul oscuro, lo ideal es procesar el tubérculo, tan pronto se realice su cosecha, para obtener una mayor concentración de almidón en él, con un "máximo de 7 días" 7.

31

⁷ KAY, Daisy E. Root Crops. 2nd Edition. Natural Resources Institute. 1987, 380 p. ISBN 13: 9780859542005.

Figura 7. Tubérculo de Sagú con alto contenido de almidón

Fuente: Elaboración propia.

1.2.2 Lavado del tubérculo. El proceso de producción del almidón de Sagú, parte del lavado del tubérculo y extracción de las impurezas, tierra y raíces con las que proviene al ser recolectado, es necesario realizar un buen lavado para asegurar que en la próxima etapa no queden residuos, este se realiza manualmente o tambores mecánicos.

Figura 8. Lavado manual del tubérculo

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Figura 9. Lavadora Mecánica rudimentaria Vereda el Herrero

Fuente: Elaboración propia.

Figura 10. Lavadora Mecánica rudimentaria Fosca

Fuente: Elaboración propia.

1.2.3 Rallado del tubérculo. Para extraer el almidón presente en el tubérculo, es necesario rallarlo para que de esta forma se rompan las fibras, este se realiza manualmente o por medio de molinos mecánicos rudimentarios.

Figura 11. Rallado manual (CRECED, sur del Huila)

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Figura 12. Ralladora mecánica para achira diseñada por CORPOICA

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Figura 13. Ralladora Mecánica rudimentaria Vereda el Herrero

Fuente: Elaboración propia.

1.2.4 Tamizado. Una vez rallado el tubérculo, se obtiene una mezcla de partículas de diferentes tamaños, la cual está compuesta por fibra y almidón húmedo, al realizar el tamizado se separa el almidón húmedo del afrecho o unche, esta operación se lleva a cabo con coladores artesanales o con tamices mecánicos.

Figura 14. Tamizado manual

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/1 1348/3744/1/Almidon%20de%20achira%20o%2 0sagu.pdf

Figura 15. Tamizadora Mecánica Fosca

Fuente: Elaboración propia.

1.2.5 Decantación y lavados repetidos. En esta etapa se realiza la separación del almidón y liquido contenido en él, suministrando agua, decantando y evacuando agua repetidamente, gracias a un método físico en el cual, por la diferencia de densidades, el más denso se depositará en la parte inferior siendo este el almidón y el menos denso en la parte superior siendo este el líquido, esto se realiza por medio de bateas, artesas o albercas.

Figura 16. Albercas de decantación, Fosca

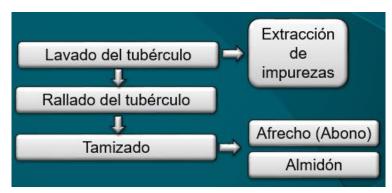
Fuente: Elaboración propia.

Figura 17. Artesas de decantación Vereda el Herrero

1.2.6 Secado. Luego de las anteriores etapas, se obtiene un almidón húmedo el cual se procede a secar por medio de los rayos del sol o en un invernadero rudimentario por un determinado tiempo.

Figura 18. Invernadero para el secado del almidón, Fosca

Fuente: Elaboración propia.


Figura 19. Secado del almidón al aire libre

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11 348/3744/1/Almidon%20de%20achira%20o%20s agu.pdf

Teniendo en cuenta las delimitaciones antes establecidas del proyecto de grado en el presente documento, se realizará única y exclusivamente el diseño de una máquina para el proceso de almidón húmedo de Sagú, excluyendo la etapa de la recolección del tubérculo ya que esta se realiza por medio del agricultor, para dicho diseño solamente se efectúan las siguientes etapas.

Figura 20. Etapas del proceso de producción de almidón húmedo de Sagú

1.3 MÁQUINARIA Y MODO DE PRODUCCIÓN DE ALMIDÓN HÚMEDO DE SAGÚ EN LA ACTUALIDAD

Actualmente la maquinaria empleada para realizar el proceso de producción de almidón húmedo de Sagú, son rudimentarias o artesanales.

Hay distintos países que consumen productos a base de almidón de Sagú, pero productores se encuentran principalmente, Perú, Ecuador, China, Vietnam y Colombia.

- **1.3.1 Perú.** En la Costa árida peruana se evidenciaron registros arqueológicos de la planta de achira por lo cual se piensa que su origen es del área andina de Perú, pero sin embargo existen diversas teorías, en esta región principalmente el Sagú se consume asado o cocido, y su modo de extracción de almidón es artesanal con herramientas rudimentarias, para productos alimenticios como pan, arepas, coladas.
- **1.3.2 Ecuador.** En Ecuador, La Achira se aprovecha casi toda completamente, sin embargo, su principal producto es el almidón contenido en su tubérculo, su hoja es utilizada para envolver productos alimenticios, su tubérculo se puede utilizar también para ser frito o cocinado, el modo de extraer el almidón contenido en él es artesanal y este se emplea para productos como pan de dulce, galletas, bizcochuelos, tortas, coladas y productos medicinales⁸, este se produce en provincias como Loja, Cotopaxi Patete, Tungurahua, entre otros, por medio de una

⁸ INSTITUTO NACIONAL AUTÓNOMO DE INVESTIGACIONES AGROPECUARÍAS. Raíces y tubérculos andinos: alternativas para la conservación y uso sostenible en el Ecuador. [en línea]. Quito, Ecuador. Estación experimental Santa Catalina. 2004. [consultado, 6 febrero, de 2020]. Disponible en: https://es.slideshare.net/Malu0910/races-tubandinos. ISBN: 92-9060-231-7.

inversión realizada por parte del Ministerio de Agricultura y Ganadería (MAG)⁹, Santa Isabel en la provincia de Azuay, produce el almidón por medio de una planta de procesamiento.

1.3.3 China y Vietnam. El sagú mejor conocido como Canna Edulis Ker en países orientales, se cultiva en países como "China y Vietnam para el procesamiento de fideos transparentes" 10, a diferencia de los demás países.

En China para la producción de almidón de Canna, existen líneas de procesamiento industrializadas y una gran variedad de máquinas para realizar el proceso etapa por etapa, para distintas clases de tubérculos

Figura 21. Línea de procesamiento de tubérculos

Fuente: ALIBABA. Línea de procesamiento de zanahoria. [Sitio Web]. [Consultado 25, marzo 2020]. Disponible en: https://spanish.alibaba.com/product-detail/carrot-cleaning-machine-carrot-cleaning-processing-line-carrot-cleaning-plant-60566512959.html

¹⁰ ROCA, W. MANRIQUE, I. Valorización de los recursos genéticos de raíces y tubérculos andinos para la nutrición y la salud. En: *Agrociencia*. [en línea]. 2005. Vol. IX, nro. 1 y nro. 2. pp. 195 – 201. [consultado el 6 febrero, de 2020]. Disponible en: http://www.acuedi.org/doc/5610/valorizacin-de-los-recursos-genticos-de-races-y-tubrculos-andinos-para-la-nutricin-y-la-salud.html

⁹ MINISTERIO DE AGRICULTURA Y GANADERIA. Santa Isabel, en Azuay, produce almidón de achira. Ecuador. 2019. [en línea]. [consultado el 6 febrero, de 2020]. Disponible en: https://www.agricultura.gob.ec/santa-isabel-en-azuay-produce-almidon-de-achira/

1.3.4 Colombia. Se realizaron visitas a municipios de Cundinamarca donde se efectúa el proceso de producción de almidón de Sagú, en donde evidencia la siguiente maquinaria:

En Puente Quetame Cundinamarca, Vereda el Herrero, la maquinaria actualmente utilizada es rudimentaria, construida por sus mismos agricultores y hornamentadores, consta de dos motores para el funcionamiento de la maquinaria.

Figura 22. Maquinaria para la producción de almidón Vereda el Herrero

Fuente: Elaboración propia.

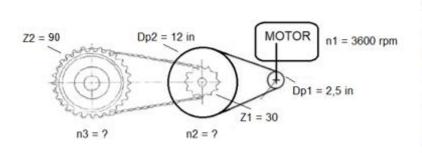

1.3.4.1 Lavadora mecánica de Sagú rudimentaria Vereda el Herrero. Esta máquina consta de una estructura metálica, con un tambor cilíndrico de 2,17 metros de largo por 70 cm de diámetro, en su interior se encuentra una malla metálica la cual está envuelta en una carcasa metálica, utiliza una manguera de agua para hacer el lavado del tubérculo, tiene un sistema de transmisión de potencia poleacorrea conectado a otro sistema piñón-cadena y es accionada por un motor manual a gasolina Honda GX160 de 5,5 HP a 3600 rpm.

Figura 23. Lavadora Mecánica rudimentaria Vereda el Herrero

En la visita a la Vereda el Herrero, se proporcionaron datos como lo son: potencia del motor y rpm, sin embargo, se tomaron las medidas necesarias a las poleas y piñones, para determinar las revoluciones por minuto del tambor

Figura 24. Transmisión de potencia lavadora mecánica Vereda el Herrero

Fuente: Elaboración propia.

Con la fórmula de transmisión de potencia:

Ecuación 1. Relación de transmisión de potencia

$$i = \frac{n_2}{n_1} = \frac{Dp_1}{Dp_2} = \frac{Z_1}{Z_2}$$

Fuente: SLIDESHARE. Sistema de transmisión de poleas con correa. 2012. [en línea]. [Consultado 29, marzo 2020]. Disponible en: https://es.slideshare.net/AlanMontalvo/sistemas-detransmisin-de-poleas-con-correa

Se procede a remplazar los datos:

$$\frac{n_2}{n_1} = \frac{Dp_1}{Dp_2}$$

$$n_2 = \frac{Dp_1}{Dp_2} x n_1$$

$$n_2 = \frac{2.5 \ in}{12 \ in} x \ 3600 \ rpm$$

$$n_2 = 750 \, rpm$$

$$n_3 = \frac{30 \ dientes}{90 \ dientes} \ x \ 750 \ rpm$$

$$n_3 = 250 \, rpm \, de \, la \, lavadora$$

1.3.4.2 Ralladora mecánica de Sagú rudimentaria Vereda el Herrero. Esta ralladora consta de una tolva de alimentación de madera, en su interior se encuentra un rodillo compuesto por un cuerpo de madera y recubierto por una lámina de acero inoxidable, sus orificios fueron hechos por sus propios agricultores de forma rudimentaria, haciendo uso de puntillas y martillo, su estructura es de madera, se acciona con un motor Diésel KM186FA 5,7 HP a 3000 rpm y tiene un sistema de transmisión de potencia de polea-correa.

Figura 25. Ralladora Mecánica rudimentaria Vereda el Herrero

1.3.4.3 Tamizador horizontal de Paletas Vereda el Herrero. Consta de una estructura metálica, la cual tiene un cajón hecho de acero inoxidable de 1,30 metros de largo, 33 cm de ancho y 30 cm de alto, en su interior se encuentra un eje de 2 pulgadas y media, el cual tiene paletas y se encargan de tamizar el almidón gracias a su rotación, es accionada por un motor de Diésel KM186FA 5,7 HP a 3000 rpm y tiene un sistema de transmisión de potencia reductor polea-correa.

Figura 26. Tamizador horizontal de Paletas Vereda el Herrero

Fuente: Elaboración propia.

Debido a que la ralladora mecánica y el tamiz horizontal se encontraban unidos por la misma transmisión de potencia y no fueron proporcionados los datos de revoluciones por minuto del cilindro rallador y del tamiz, se tomaron las medidas necesarias a las poleas, para determinar las revoluciones por minuto.

RALLADOR n1 = 3000 rpm MOTOR n2 = ?n3 = ?Dp3 = 3inDp4 = 5inDp1 = 3inDp2 = 5inn5 = 7Dp7 = 16in Dp5 = 9in Dp6 = 4inTAMIZ Dp8 = 4inDp9 = 20inn6 = ?

Figura 27. Transmisión de potencia ralladora y tamiz Vereda el Herrero

Fuente: Elaboración propia.

Con la <u>Ecuación 1</u> de relación de transmisión de potencia, se procede a remplazar los datos:

$$\frac{n_2}{n_1} = \frac{Dp_1}{Dp_2}$$

$$n_2 = \frac{Dp_1}{Dp_2} x n_1$$

$$n_2 = \frac{3 in}{5 in} \times 3000 rpm$$

$$n_2 = 1800 \, rpm$$

$$\frac{n_3}{n_2} = \frac{Dp_3}{Dp_4}$$

$$n_3 = \frac{Dp_3}{Dp_4} x n_2$$

$$n_3 = \frac{3 in}{5 in} \times 1800 rpm$$

 $n_3 = 1080 \ rpm \ del \ rallador$

$$\frac{n_4}{n_2} = \frac{Dp_3}{Dp_5}$$

$$n_4 = \frac{Dp_3}{Dp_5} \times n_2$$

$$n_4 = \frac{3 in}{9 in} \times 1800 rpm$$

$$n_4 = 600 \, rpm$$

$$\frac{n_5}{n_4} = \frac{Dp_6}{Dp_7}$$

$$n_5 = \frac{Dp_6}{Dp_7} \times n_4$$

$$n_5 = \frac{4 in}{16 in} \times 600 rpm$$

$$n_{5} = 150 \, rpm$$

$$\frac{n_{6}}{n_{5}} = \frac{Dp_{8}}{Dp_{9}}$$

$$n_{6} = \frac{Dp_{8}}{Dp_{9}} x n_{5}$$

$$n_{6} = \frac{4 \, in}{20 \, in} x 150 \, rpm$$

$$n_{6} = 30 \, rpm \, del \, tamiz$$

En Fosca Cundinamarca, Vereda San Antonio, la maquinaria actualmente utilizada es rudimentaria pero más moderna que en la anterior mostrada, esta hace uso de un solo motor para el funcionamiento de su maquinaria.

Figura 28. Maquinaria para la producción de almidón Vereda San Antonio

Fuente: Elaboración propia.

1.3.4.4 Lavadora mecánica de Sagú rudimentaria Fosca, Vereda San Antonio. Consta de un cilindro de 3,30 metros de largo y 60 cm de diámetro, hecho en malla metálica, en su interior se encuentra una espiral de acero la cual se encarga de trasladar el tubérculo hasta el final del tambor y así conducirlo a la siguiente etapa, se utiliza una manguera de agua para realizar el lavado del tubérculo, tiene un

sistema de transmisión de potencia polea-correa y piñón-cadena y es accionada por un motor Diésel 6 HP a 3600 rpm.

Figura 29. Lavadora Mecánica rudimentaria Fosca

Fuente: Elaboración propia.

1.3.4.5 Ralladora mecánica de Sagú rudimentaria Fosca, Vereda San Antonio. Consta de una tolva de alimentación cuadrada de madera, en su interior se localiza un rodillo de madera de 40 cm de largo y 33 cm de diámetro, cubierto por una lámina metálica perforada rudimentariamente por medio de puntillas y martillo, como se observa en la imagen 27, tiene una estructura de madera, su sistema de transmisión

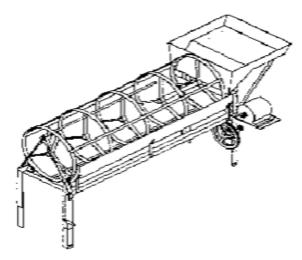
de potencia de polea-correa y es accionada por un motor Diésel 6 HP a 3600 rpm.

Figura 30. Ralladora Mecánica rudimentaria Fosca

1.3.4.6 Tamizadora mecánica rudimentaria Fosca, Vereda San Antonio. Esta máquina consta de una estructura metálica la cual sostiene un cajón de acero inoxidable de 1,40 metros de alto, 30 cm de ancho y 34 cm de alto, en su interior se encuentra un eje de 2 pulgadas y media el cual posee paletas las cuales por su movimiento rotatorio tamizan, tiene un sistema de transmisión de potencia de poleacorrea y es accionada por un motor Diésel 6 HP a 3600 rpm.

Figura 31. Tamizadora Mecánica Fosca

Los agricultores manifestaron que las maquinas comúnmente utilizadas por los alrededores del departamento de Cundinamarca, básicamente tienen una estructura similar a las dos anteriores mostradas y el mismo principio de funcionamiento, siendo estas de igual forma unas máquinas que sirven para el proceso que se lleva a cabo, pero pueden incluirse mejoras para que este se vea mejor aprovechado y sea más eficiente.


CORPOICA (Corporación Colombiana de Investigación Agropecuaria) confinado con PRONATTA¹¹, han realizado investigaciones y desarrollo de proyectos en los cuales se han implementado máquinas para la producción de almidón de Sagú, dicha máquinas están en funcionamiento en los municipios de Huila y presentan las siguientes características y estructura:

1.3.4.7 Lavadora mecánica de achira CORPOICA. Esta máquina consta de un "tambor cilíndrico de 2 metros de largo por 75 cm de diámetro, el cual está hecho de acero, y recubierto en malla galvanizada con agujeros cuadrados de una pulgada de lado, tiene un sistema de transmisión de potencia polea-piñón, y es accionada por un motor de 2 HP a 1200 rpm"¹².

¹¹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

¹² Ibid., p. 15.

Figura 32. Lavadora mecánica CORPOICA

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

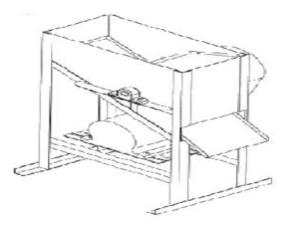
http://bibliotecadigital.agronet.gov.co/bitstream/11348/3 743/2/Agroindustria%20para%20la%20elaboracion%2 0de%20harina%20de%20achira.pdf

1.3.4.8 Ralladoras mecánicas para achira diseñadas por CORPOICA. "CORPOICA, con el apoyo de estudiantes de ingeniería mecánica de la Universidad Nacional de Colombia" desarrollaron dos rallos mecánicos, constan de una tolva de alimentación, con un pechero ajustable mediante un tornillo tensor, lo que permite tener una mejor eficiencia en el rallado, recubiertos por una lámina de acero inoxidable la cual esta previamente troquelada con orificios cuadrados, se puede accionar con un motor de 8 HP de gasolina o 4 HP si es diésel o eléctrico, con 1800 rpm¹⁴.

¹³ Ibíd., p.16.

¹⁴ Ibíd., p.18.

Figura 33. Ralladora mecánica para achira diseñada por CORPOICA



CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%200%20sagu.pdf

CORPOICA realizó un siguiente diseño más estructurado, el cual consta de una tolva de alimentación y de un "cilindro metálico de 25 cm de largo por 25 cm de diámetro, recubierto en caucho, en el cual se fija una lámina de acero inoxidable troquelada en forma de espina de pescado para dar una mayor eficiencia al rallado, puede ser accionada por un motor eléctrico de 3 HP o de gasolina de 4 HP, con una velocidad de 3600 rpm, sistema de transmisión de potencia Poleas y correas, con un sistema de adición de agua incorporado" 15.

¹⁵ Ibíd., p. 19.

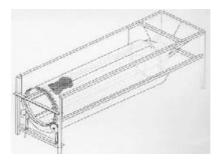
Figura 34. Ralladora mecánica para achira CORPOICA

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. EI Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

1.3.4.9 Tamiz hexagonal diseñado por CORPOICA. Consta de 6 paredes, cubierto en su interior con una malla de gallinero que soporta la tela del tamiz, "la intensidad del golpe puede disminuir debido al ángulo entre sus caras del hexágono, pero su frecuencia aumenta"¹⁶.

¹⁶ Ibíd., p. 23.

Figura 35. Tamiz hexagonal CORPOICA



CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. EI Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

1.3.4.10 Tamiz CORPOICA de flujo continuo. "Consta de una estructura metálica, la cual tiene un cilindro en acero inoxidable de 60 cm de diámetro y una longitud de 2 metros, recubierto por tela súper-nylon de 80 huecos por pulgada, soportada por una malla de acero inoxidable, el cilindro se encuentra cubierto por una camisa de acero inoxidable, que evita riegos, es accionada por un motor eléctrico de 2 HP a 1200 rpm" ¹⁷, el sistema de transmisión de potencia es mediante polea-correa.

Figura 36. Tamiz CORPOICA de flujo continuo

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

¹⁷ Ibid., p. 24.

1.3.4.11 Especificaciones técnicas de las máquinas actuales. En los siguientes cuadros, se obtiene la recopilación de datos de las maquinas antes mostradas, incluyendo máquinas para extracción de almidón de yuca ya que es el tubérculo con características morfológicas y etapas de proceso más similar al Sagú.

Cuadro 1. Máquinas de lavado y extracción de impurezas

Máquina Especificación	Lavadora Mecánica Vereda el Herrero	Lavadora Mecánica Vereda San Antonio	Lavadora Mecánica de achira CORPOICA	Lavadora mecánica para yuca CIAT
Estructura	Metálica	Metálica	Acero	Metálica
Largo del tambor (m)	2,17	3,30	2	
Diámetro del tambor (cm)	70	60	75	
Carcaza	Metálica	Malla metálica	Acero	Metálica perforada
Interior del tambor	Malla metálica	Espiral malla metálica	Malla Galvanizada	
Medio de transporte de agua	Manguera de agua	Manguera de agua	Tubo galvanizado interior del tambor con 6 boquillas	Eje central tubular
Transmisión de potencia	Polea-Correa y Piñón- Cadena	Polea-Correa y Piñón- Cadena	Polea-Correa y Piñón- Cadena	Motor-Reductor
Motor	Manual a gasolina	Diésel		
Potencia	5,5 HP	6 HP	2 HP	2 HP
Rpm del motor	3600	3600	1200	
Rpm del tambor	250		45 o 50	36
Cantidad de agua suministrada	10 – 9 L / Kg	10 – 9 L / Kg	1 a 1,2 litros por kg de rizoma	36-54 L/min
Capacidad de lavado por hora	360 kg	365 kg	700 kg	

Fuente: Elaboración propia con base en: Visitas a municipios de Fosca y Puente Quetame, Cundinamarca. - CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf - CATÁLOGO TÉCNICO CIAT. Maquinaria y equipo tecnológico para la industria de extracción de almidón de yuca. Cali, Colombia. 1994. p. 3. [En Línea]. [Consultado 06 de noviembre 2019]. Disponible en: http://ciat-library.ciat.cgiar.org/articulos_ciat/Digital/66212_EC.3_Maquinaria_y_equipo_tecnologico_para_la_industria_de_extraccion_de_almidon_de_yuca.pdf

Cuadro 2. Máquinas de rallado

Máquina Especificación	Ralladora Mecánica Vereda el Herrero	Ralladora Mecánica Vereda San Antonio	Ralladora Mecánica de achira CORPOICA Ralladora Mecánica de achira CORPOICA				Ralladora mecánica para yuca CIAT
Tolva de alimentación	Madera	Madera	Acero		Metálica		Acero
Estructura	Madera	Madera	Acero		Metálica		Acero
Rodillo	Madera cubierto lamina de acero inoxidable	Madera cubierto lamina de acero	Cubiertos por lamina troquelada de acero inoxidable		Caucho y lamina de acero inoxidable troquelado espina de pescado		Madera
Transmisión de potencia	Polea-Correa	Polea-Correa	Polea-Correa y Piñón- Cadena		Polea-Correa		Motor-reductor
Motor	Diésel	Diésel	Gasolina	Diésel	Gasolina	Eléctrico	
Potencia	5,7 HP	6 HP	8 HP	4 HP	4 HP	3 HP	3-5 HP
Rpm del motor	3000	3600	3600		3600		
Rpm del rodillo	1080	1800	1800		2400		1200-3000
Capacidad por hora	360 kg	365 kg			700 – 1000 kg		900 – 1800 kg

Fuente: Elaboración propia con base en: Visitas a municipios de Fosca y Puente Quetame, Cundinamarca. - CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf -CATÁLOGO TÉCNICO CIAT. Maquinaria y equipo tecnológico para la industria de extracción de almidón de yuca. Cali, Colombia. 1994. P. [En Línea]. [Consultado 06 2019] Disponible en:http://ciat-3. de noviembre library.ciat.cgiar.org/articulos_ciat/Digital/66212_EC.3__Maquinaria_y_equipo_tecnologico_para_la_industria_de_extraccion_de_almidon_d e_yuca.pdf

Cuadro 3. Máquinas de tamizado

Máquina	Tamizadora	Tamizadora			Tamiz flujo	Tomiz vuos	
Especificación	Mecánica Vereda el Herrero	Mecánica Vereda San Antonio	Tamiz Hexagonal CORPOICA		continuo CORPOICA	Tamiz yuca CIAT	
Estructura	Metálica	Metálica	Meta	álica	Acero	Metálica	
Tolva					Acero inoxidable		
Cubierta	Acero	Acero			Camisa de acero inoxidable		
Cilindro					Acero inoxidable		
Medidas de la cubierta	1,30 x 33 x 30	1,40 x 30 x 34			60 Ø y 2 metros largo		
Interior			Malla de gallinero		Tela super-nylon 80 huecos por pulgada	Malla Mesh 40 de acero inoxidable	
Eje	2 pulgadas y media con paletas incorporadas	2 pulgadas y media con paletas incorporadas			NA		
Transporte de agua	Tubo PVC	Tubo PVC			Tubo de acero inoxidable 6 boquillas		
Transmisión de potencia	Polea-Correa	Polea-Correa	Polea-Correa		Polea-Piñón	Polea-Correa y Piñón-cadena	
Motor	Diésel	Diésel	Gasolina Eléctrico		Eléctrico		
Potencia	5,7 HP	6 HP	4 HP 3 HP		2 HP	2 HP	
Rpm del motor	3000	3600	3600		1200		
Rpm del tamiz	30		2400		NA	30	
Rpm del cilindro	N/A	N/A			45 o 50	15	
Capacidad por hora	360 kg	365 kg	700 – 1000 kg		400 kg	250 kg masa rallada/h	
Consumo de agua	10 – 9 L / Kg	10 – 9 L / Kg			3 L/kg de rizoma	36 – 54 l/min	

Fuente: Elaboración propia con base en: Visitas a municipios de Fosca y Puente Quetame, Cundinamarca. - CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%200%20sagu.pdf - CATÁLOGO TÉCNICO CIAT. Maquinaria y equipo tecnológico para la industria de extracción de almidón de yuca. Cali, Colombia. 1994. P. 3. [En Línea]. [Consultado 06 de noviembre 2019] Disponible en:http://ciat-

library.ciat.cgiar.org/articulos ciat/Digital/66212 EC.3 Maquinaria y equipo tecnologico para la industria de extraccion de almidon de yuca.pdf

1.4 REQUERIMIENTOS Y PARAMETROS GENERALES DE DISEÑO

- **1.4.1 Requerimientos.** Los siguientes requerimientos fueron manifestados por pequeños productores del municipio de Puente Quetame Cundinamarca, para satisfacer las necesidades buscadas en el diseño de la máquina para la producción de almidón húmedo de Sagú.
 - Reducir el tiempo de cosecha-producción de almidón
 - Seguridad para los usuarios
 - Diseño ergonómico
 - Diseño higiénico
 - Aumentar la capacidad de tubérculos por hora en la maquina
 - Reducir el uso de agua en el proceso
 - Menor potencia y energía

1.4.2 Parámetros funcionales

- Proceso continuo
- Fácil montaje, operación y mantenimiento sencillo
- La máquina se debe encontrar bajo techo, para un mejor funcionamiento y reducción accidentes
- La máquina se debe ubicar en un terreno nivelado y preferiblemente de cemento
- Se debe contar con una acometida eléctrica trifásica
- **1.4.3 Parámetros generales de diseño.** Es necesario identificar los criterios y condiciones bajo las cuales se debe diseñar la máquina para la producción húmedo de Sagú, y así realizar una adecuada selección y cálculos de los componentes, se tienen en cuenta parámetros bases de máquinas ya existentes en la actualidad y los requerimientos antes expuestos para satisfacer la necesidad.
- **1.4.3.1 Sistema de lavado del tubérculo.** Se tienen los siguientes parámetros de diseño, donde se sustentarán las especificaciones.

Cuadro 4. Parámetros de diseño sistema de lavado del tubérculo

Especificación	Lavado y extracción de impurezas
Capacidad	500 - 550 kg / h
Revoluciones por minuto	40 – 50 Rpm
Consumo de agua	2 – 4 L / kg
Material	Acero inoxidable
Potencia	≤ 4 HP

Capacidad de la máquina. Se recopilan datos del municipio de Puente Quetame Cundinamarca, para establecer cuáles son las necesidades a cubrir.

Se tiene una cosecha de aproximadamente 500 bultos de tubérculos de Sagú en el año.

$$1 \ bulto \rightarrow 60 kg$$

$$500 \ bultos \ cosecha \ al \ a\~no* 60 \ kg = 30.000 \ kg \ \rightarrow 30 \ toneladas \ al \ a\~no$$

Se introduce en la maquina actual de la Vereda el Herrero ubicada en el municipio de Puente Quetame Cundinamarca, aproximadamente 6 bultos por hora.

$$6 \text{ bultos } *60 \text{ kg} = 360 \text{ kg/h}$$

Dando una capacidad actual de la máquina, de 360 kg/h.

Para procesar los tubérculos recolectados en la cosecha, con la capacidad actual que tiene la máquina, se necesitan las siguientes horas:

$$30.000 \ kg \ * \frac{1 \ hora}{360 \ kg} = 83,333 \ horas$$

Obteniendo un tiempo de 83,333 horas para su procesamiento.

Indagando con los agricultores de la vereda, manifiestan que trabajan aproximadamente 5 horas diarias en el proceso de extracción.

$$83,333 \ horas * \frac{?Dias}{5 \ horas} = 16,7 \ dias$$

Dando como resultado un total de 16,7 días para su procesamiento, sin embargo, manifiestan que pueden demorarse hasta 20-25 días en la producción del almidón.

Como se mencionó anteriormente, entre más rápido se procese el tubérculo de Sagú una vez realizada su cosecha, mayor cantidad de almidón se localiza en él¹⁸, por eso uno de los requerimientos es la reducción de tiempo cosecha – producción y esto se busca mejorar, implementando 2 jornadas laborales diarias, de 5 horas cada una y aumentando la capacidad de la máquina a 500 kg/h, reduciendo estos tiempos de la siguiente manera:

$$30.000 \, kg \, * \frac{1 \, hora}{500 \, kg} = 60 \, horas$$

$$60 \ horas * \frac{? Dias}{5 + 5 \ horas} = 6 \ dias$$

Dando como resultado un total de 6 días para su procesamiento y un producto de mejor calidad, esta es la capacidad general que se tomara en toda la máquina.

Revoluciones por minuto del tambor. Según un informe técnico realizado por CORPOICA, en el cual se estudiaron varios prototipos de lavado, se llegó a la conclusión que uno de los rangos más óptimos para los tambores son "24 – 48 rpm, se observan los mejores resultados, mejor limpieza del tubérculo y desprendimiento de impurezas, para pequeñas capacidades, y un rango de 45 – 50 rpm"¹⁹, para medias capacidades, donde se toma como referencia para la necesidad a cubrir del municipio de Puente Quetame.

¹⁹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

¹⁸ KAY, Daisy E. Root Crops. 2nd Edition. Natural Resources Institute. 1987, 395 p. ISBN 13: 9780859542005.

Consumo de agua. Actualmente la máquina de lavado de tubérculos empleada en el municipio de Puente Quetame vereda el Herrero, utiliza aproximadamente una cantidad de agua 10 – 9 L/kg lo cual es excesivo para esta etapa, ya que no se cuenta con la tecnología necesaria y se emplea el uso de una manguera de agua para efectuar el lavado, se desea reducir la utilización de este recurso ambiental, a un rango de 2 - 4 L/kg mejorando el desperdicio de agua y la eficiencia del lavado.

Material de la máquina. La máquina tiene contacto con alimentos, por lo tanto, es necesario el uso de materiales aptos para tal fin, se debe tener en cuenta un diseño higiénico donde se utilice acero inoxidable en partes donde la máquina entre en contacto con dicho producto.

Potencia de la máquina. Por el diseño que se empleara en la máquina, se debe tener en cuenta que la potencia suministrada tenga la capacidad de accionar el sistema de transmisión de potencia, para garantizar el proceso de producción de almidón húmedo se Sagú, se empleara un motor eléctrico ya que este no genera emisiones y no contaminara al producto.

Se busca utilizar un motor eléctrico de una potencia de ≤ 4 HP en toda la máquina en general de esta manera garantizar más ahorro, bajo mantenimiento y mayor rentabilidad.

1.4.3.2 Sistema de rallado del tubérculo. Se tienen los siguientes parámetros de diseño, donde se sustentarán las especificaciones

Cuadro 5. Parámetros de diseño sistema de rallado del tubérculo

Especificación	Rallado de tubérculo			
Capacidad	500 - 550 kg / h			
Revoluciones por minuto	2000 – 3000 Rpm			
Material	Acero inoxidable			
Potencia	≤ 4 HP			

Fuente: Elaboración propia.

Revoluciones por minuto del rodillo. Según un informe técnico realizado por CORPOICA²⁰, en el cual se estudiaron varios prototipos de rallado, se demuestra que al aumentar la capacidad del rallo y a su vez las revoluciones a 2400 rpm, no es necesaria la intervención humana para realizar el empuje del producto, razón por la cual se presenta problemas de seguridad en el municipio de Puente Quetame, donde se toma como referencia para la necesidad a cubrir del municipio.

1.4.3.3 Sistema de tamizado del almidón. Se tienen los siguientes parámetros de diseño, donde se sustentarán las especificaciones.

Cuadro 6. Parámetros de diseño sistema de Tamizado del almidón

Especificación	Tamizado del almidón		
Capacidad	500 - 550 kg / h		
Revoluciones por minuto	40 – 60 Rpm		
Consumo de agua	2 – 3 L / kg		
Material	Acero inoxidable		
Potencia	≤ 4 HP		

Fuente: Elaboración propia.

Revoluciones por minuto. Según un informe técnico realizado por CORPOICA, en el cual se estudiaron varios prototipos de tamizado, se evidencia que las revoluciones por minutos donde no se observa tanta perdida de material y se tamiza la mayor cantidad de masa rallada es "45 a 50 rpm"²¹ y se reduce la cantidad de agua utilizada en la etapa, razón por la cual se presenta problemas de perdida y consumo excesivo de agua en el municipio de Puente Quetame, donde se toma como referencia para la necesidad a cubrir del municipio.

²⁰ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

²¹ Ibid., p. 50.

Consumo de agua. Actualmente la máquina de tamizado de almidón empleada en el municipio de Puente Quetame vereda el Herrero, utiliza aproximadamente una cantidad de agua 10 – 9 L/kg lo cual es excesivo para esta etapa, ya que no se cuenta con la tecnología necesaria y se emplea el uso de tubo de PVC con agujeros por donde sale el agua para efectuar el tamizado, se desea reducir la utilización de este recurso ambiental, a un rango de 2 -3 L/kg mejorando el desperdicio de agua y la eficiencia del lavado.

2. DISEÑO METODOLÓGICO Y ALTERNATIVAS DE SOLUCIÓN

2.1 DISEÑO METODOLÓGICO

Para llevar a cabo el diseño adecuado de la máquina para la producción de almidón húmedo de Sagú, es de gran importancia conocer el proceso para la extracción de dicho almidón, actualmente en el municipio de Puente Quetame Cundinamarca, se efectúa un proceso con ayuda de máquinas rudimentarias, las cuales presentan muchas deficiencias en el proceso, esfuerzos de mano de obra, más tiempo, altos costos de producción, ausencia de control de calidad y mayor probabilidad de riesgos laborales, a causa de esto se pretende diseñar una maquina la cual realice el proceso de una manera más eficiente, mejorando dichas falencias, con un proceso continuo a un bajo costo de diseño y mantenimiento, teniendo en cuenta los requerimientos del público, ayudando a la incrementación de la economía de los pequeños productores de Sagú, impulsando a la industrialización.

Con la realización de este proyecto se desea disminuir el uso de los recursos ambientales y la utilización de residuos del proceso, como una alternativa para diferentes usos positivos, y así no tener grandes afectaciones al entorno.

2.1.1 Proceso para la producción de almidón húmedo de Sagú y funcionamiento general. De acuerdo a lo especificado anteriormente, se procede a describir el funcionamiento de la máquina para la producción de almidón húmedo de Sagú, con el objetivo de implementar una idea a lo que se pretende desarrollar.

La máquina tiene un principio de funcionamiento el cual empieza con la introducción del tubérculo de Sagú en la primera etapa de la máquina, Lavado y extracción de impurezas, esta acción se realiza por medio de un operario, verificando que el producto quede completamente adentro de la tolva se procede a realizar el lavado correspondiente y la extracción de impurezas como lo son raíces con las que el tubérculo se recolecto de su respectiva cosecha, luego de esto el tubérculo es transportado a la siguiente etapa, Rallado del tubérculo, se introduce el tubérculo completamente limpio a una segunda tolva de alimentación para ser rallado, una vez rallado ingresa a la siguiente etapa, Tamizado, donde se realiza la separación del afrecho y el almidón húmedo, para así tener como resultado la producción de almidón húmedo de Sagú.

2.1.2 Modo funcional de la máquina. A través de un diagrama de caja negra se expondrá el modo funcional que tiene la máquina y más adelante por medio de un diagrama de caja gris, se explicara más a detalle dicho funcionamiento.

Diagrama 1. Caja negra de la máquina

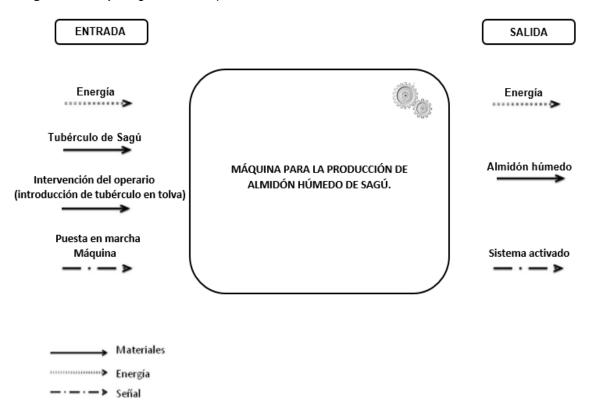
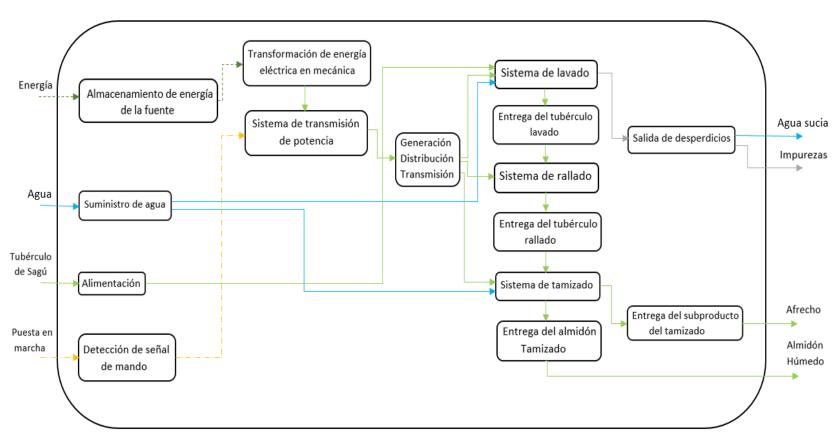



Diagrama 2. Caja gris de la máquina

2.2 SISTEMAS QUE COMPONEN LA MÁQUINA PARA LA PRODUCCIÓN DE ALMIDÓN HÚMEDO DE SAGÚ

Conforme al proceso de producción de almidón húmedo de sagú y de los parámetros de diseño determinados anteriormente, se obtienen los siguientes sistemas en el proceso:

- Sistema Estructural
- Sistema de transmisión de potencia
- Sistema de lavado y extracción de impurezas del tubérculo
- Sistema de rallado del tubérculo
- Sistema de tamizado del almidón

Sistema de Lavado y extracción de impurezas

Sistema de transmisión de potencia

Sistema de transmisión de del tubérculo

Sistema de tamizado del almidón

Almidón húmedo

Sistema Estructural

Diagrama 3. Diagrama de flujo sistemático de la máquina

Fuente: Elaboración propia.

Se llevará a cabo una explicación simplificada de los sistemas estructural, transmisión de potencia y sistema de control, ya que se centrará el análisis y selección de alternativas, en los sistemas que tienen que ver netamente con el proceso de producción de almidón húmedo de sagú.

- **2.2.1 Sistema estructural.** Este sistema es el que se encarga de sostener los componentes que conforman la máquina, el cual tiene que estar en la capacidad de operar sin riesgo y mantener firmeza durante el proceso.
- **2.2.2 Sistema de transmisión de potencia.** Este sistema es el encargado de transmitir la potencia y generar el respectivo movimiento a los elementos que conforman la máquina, para así garantizar que cumplan con sus objetivos de operación y funcionamiento.
- **2.2.3 Sistema de control.** Este sistema es el encargado de controlar los elementos mecánicos de la máquina para cumplir con el proceso requerido.
- 2.2.4 Sistema de lavado y extracción de impurezas. Este sistema es el que se encarga de lavar el tubérculo y extraer las impurezas y raíces con las que proviene al ser recolectado en la cosecha, en el proceso de producción de almidón húmedo de Sagú es necesario realizar un buen lavado de tubérculo para asegurar que en la próxima etapa no queden residuos los cuales puedan afectar la calidad del producto, se plantean las siguientes alternativas de solución para el sistema de lavado y extracción de impurezas.

Para el planteamiento de las alternativas se tendrá en cuenta los requerimientos del usuario necesarios para cumplir la necesidad y las características técnicas de la máquina según los parámetros establecidos anteriormente, se implementará el método QFD (despliegue de la función de la calidad), para la selección de alternativa más exacta y óptima para el sistema.

2.2.4.1 Requerimientos del usuario. En el método QFD se propone plantear un listado de los **QUÉ**, los cuales son los aspectos que el usuario requiere del producto, serán valorados según la importancia que cada uno tenga en el diseño, tomando como 1 el requerimiento de menor importancia y 5 el requerimiento de mayor importancia²², en donde se plantea los siguientes requerimientos:

Se realizará el mismo procedimiento para cada uno de los subsistemas analizados.

²² PDCAHOME. Despliegue de la función calidad (QFD): Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-despliegue-calidad/

Cuadro 7. Requerimientos del usuario sistema de lavado y extracción de impurezas

REQUERIMIENTOS		IMPORTANCIA				
	1	2	3	4	5	
Qué sea segura para los usuarios					Х	
Qué sea de fácil operación			X			
Qué se reduzcan o eliminen las					Х	
exposición de contaminantes físicos						
Qué tenga un bajo costo de diseño y			X			
mantenimiento						
Qué no cause daños al tubérculo de					X	
Sagú						
Qué lave una mayor cantidad de					X	
tubérculos por hora						
Qué quite la mayor cantidad de					X	
impurezas posibles del tubérculo						
Qué consuma menor cantidad de agua					X	
Qué el sistema de transmisión de				Х		
potencia sea sencillo						
Qué el consumo de potencia sea el				Х		
requerido por la necesidad						
Qué tenga fácil montaje y desmontaje				Х		
Qué no sea sobre dimensionada			X			

2.2.4.2 Requisitos técnicos del diseño. En el método QFD se propone plantear un listado de los CÓMO, los cuales son los requisitos técnicos o parámetros de diseño que se desea tenga el producto y se consideren necesarios para cumplir los requerimientos del usuario²³, serán valorados según la importancia que cada uno tenga en el diseño, tomando como 1 el requerimiento de menor importancia y 5 el requerimiento de mayor importancia, en donde se plantea los siguientes requerimientos:

Se realizará el mismo procedimiento para cada uno de los subsistemas analizados.

²³ PDCAHOME. Despliegue de la función calidad (QFD); Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-desplieguecalidad/

Cuadro 8. Requisitos técnicos del diseño sistema de lavado y extracción de impurezas

PARAMETROS DE DISEÑO		IMPORTANCIA				
	1	2	3	4	5	
Instalación sencilla y diseño		Х				
ergonómico						
Menor consumo de energía			X			
Capacidad de tubérculos por hora de					Х	
acuerdo a la necesidad						
Consumo de agua de kg/h de acuerdo					Х	
a la necesidad						
Tamaño del sistema de acuerdo al			Х			
área establecida						
Revoluciones por minuto de la					Х	
lavadora no generen daños al						
tubérculo						
Diseño higiénico					X	
Menor número de elementos posibles				X		
Transmisión de potencia satisfaga la				Х		
necesidad						
Materiales apropiados para el manejo					Х	
de alimentos						

2.2.4.3 Planteamiento de alternativas. En seguida se presentarán tres alternativas para cada subsistema del proceso el cual debe cumplir la máquina para la producción de almidón húmedo de Sagú, donde se analizarán posteriormente las alternativas y se escogerá las que cumplan con los parámetros antes establecidos para la necesidad del problema planteado.

2.2.4.4 Alternativas subsistema de lavado y extracción de impurezas. Las alternativas que se plantearan a continuación son evaluadas por su funcionamiento.

2.2.4.5 Alternativa 1: lavadora de cepillos por inmersión. Esta alternativa consiste en un tanque de lavado el cual posee rodillos con cerdas duras, el tubérculo es transportado por medio de una banda con compartimientos donde es ubicado y mientras se traslada se realiza la operación de fregado y de extracción de impurezas.

Figura 37. Lavadora de cepillos por inmersión

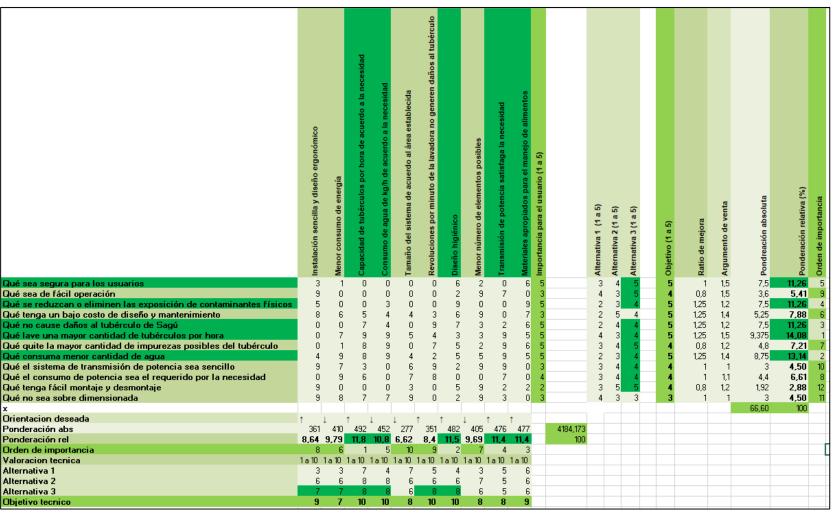
Fuente: MADE-IN-CHINA. Cepillo para el lavado de papa y el jengibre. [Sitio web]. Qingdao, China. [Consultado 25, marzo 2020]. Disponible en: https://es.made-in-china.com/co-uwants/product-Brush-Washing-Machine-for-Potato-and-Ginger-esooghyiy.html

2.2.4.6 Alternativa 2: Lavadora rotativa por aspersión. Esta alternativa consiste en una lavadora rotativa la cual por medio de su giro causa que el tubérculo sea impulsado, mientras que por un sistema de boquillas de aspersión se efectúa la salida de agua a una presión determinada, para así lograr penetrar las uniformidades del tubérculo, a unas revoluciones por minuto específicas para que el tubérculo no contenga daños, a su vez por la abrasión generada entre el tubérculo y la superficie de la lavadora, se extraerán las impurezas como lo son las raíces y parte de su cascarilla.

Figura 38. Lavadora rotativa por aspersión

Fuente: ALBION. Lavadora rotativa. [Sitio web]. Argentina. [Consultado 25, marzo 2020]. Disponible en: http://www.albion.com.ar/es/equipos/lavadora/eq-lav-rotativa-1.html

2.2.4.7 Alternativa 3: Lavadora flujo continuo por aspersión. Esta alternativa basa su funcionamiento igual que la anterior, la cual tiene una diferencia que es por flujo continuo, es decir, la salida y la entrada del tubérculo va a ser de forma permanente facilitando el transporte de una etapa a otra, también implementando una espiral en el interior de la lavadora, logrando que el tubérculo sea transportado al final de la etapa sin necesidad de un operario.


Figura 39. Lavadora flujo continuo por aspersión

Fuente: MADE-IN-CHINA. Lavadora de jengibre. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://es.made-in-china.com/co_keweijixie/product_Ginger-Washing-Machine_horghoiyg.html

2.2.4.8 Selección de las alternativas. Se evaluaron las alternativas para los sistemas principales de la máquina por el método "QFD (despliegue de la función de la calidad)"²⁴, y se escogió posteriormente la alternativa que soluciona el problema, en el sistema de lavado de la máquina, se usara el principio de funcionamiento de la alternativa número 3, Lavadora flujo continuo por aspersión, ya que se ajusta más a la necesidad y al objetivo planteado, donde se obtiene una ponderación relativa más alta (Color verde oscuro) en los requerimientos y parámetros que se calificaron con un mayor nivel de importancia anteriormente.

²⁴ PDCAHOME. Despliegue de la función calidad (QFD): Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-despliegue-calidad/

Cuadro 9. Matriz QFD Sistema de lavado del tubérculo

Fuente: Elaboración propia.

2.2.5 Sistema de rallado del tubérculo. Este sistema es el encargado de rallar el tubérculo previamente lavado, con el fin de romper las fibras que componen el tubérculo y de esta forma extraer el almidón presente en él, para esto es necesario rallarlo, sin embargo, no puede desmenuzar completamente el producto ya que se puede perder almidón en el proceso y tampoco pueden quedar trozos muy grandes por que no se desprendería completamente el almidón deseado.

se plantean las siguientes alternativas de solución para el sistema rallado del tubérculo.

Para el planteamiento de las alternativas se tendrá en cuenta los requerimientos del usuario necesarios para cumplir la necesidad y las características técnicas de la máquina según los parámetros establecidos anteriormente, se implementará el método "QFD (despliegue de la función de la calidad)"²⁵, para la selección de alternativa más exacta y óptima para el sistema.

2.2.5.1 Requerimientos del usuario.

Cuadro 10. Requerimientos del usuario sistema de rallado del tubérculo

REQUERIMIENTOS	IMPORTANCIA				
	1	2	3	4	5
Qué sea segura para los usuarios					Х
Qué sea de fácil operación		X			
Qué tenga un bajo costo de diseño y mantenimiento			X		
Qué rompa más fibras del tubérculo de Sagú					Х
Qué ralle una mayor cantidad de tubérculos por hora					Х
Que su componente de rallado sea resistente a la abrasión					Х
Qué el sistema de transmisión de potencia sea sencillo			Х		
Qué el consumo de potencia sea el requerido por la necesidad				Х	
Qué tenga fácil montaje y desmontaje				Х	
Qué no sea sobre dimensionada				Χ	
Qué la entrada de alimentación sea continua					X

Fuente: Elaboración propia.

. .

²⁵ PDCAHOME. Despliegue de la función calidad (QFD): Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-despliegue-calidad/

2.2.5.2 Requisitos técnicos del diseño.

Cuadro 11. Requisitos técnicos del diseño sistema de rallado del tubérculo

PARAMETROS DE DISEÑO	IMPORTANCIA				
	1	2	3	4	5
Instalación sencilla y diseño			Х		
ergonómico					
Menor consumo de energía				Х	
Capacidad de tubérculos por hora de					X
acuerdo a la necesidad					
Tamaño del sistema de acuerdo al			X		
área establecida					
Revoluciones por minuto del cilindro					X
con más eficiencia al rallado					
Diseño higiénico				X	
Menor número de elementos posibles				X	
Transmisión de potencia satisfaga la				Х	
necesidad					
Materiales apropiados para el manejo				Х	
de alimentos					

Fuente: Elaboración propia.

2.2.5.3 Planteamiento de alternativas.

2.2.5.4 Alternativas subsistema de rallado del tubérculo. Las alternativas que se plantearan a continuación son evaluadas por su funcionamiento.

2.2.5.5 Alternativa 1: Ralladora de un rodillo. Esta alternativa consiste en una máquina compuesta por una tolva de alimentación un sistema de impulsión y un rodillo giratorio con estrías, tiene como función realizar una acción de aplastamiento la cual es efectuada por la pequeña distancia que se encuentra entre el rodillo y la carcasa, Estas son utilizadas para triturar o moler diferentes tipos materiales. y son utilizadas en la industria.

Figura 40. Ralladora de un rodillo

Fuente: DHgate.com. Máquina de procesamiento de almidón de yuca. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://es.dhgate.com/product/cassava-starch-processing-machine-sweet-potato/480478370.html

2.2.5.6 Alternativa 2: Ralladora de un rodillo con inclinación. Esta alternativa está compuesta por una tolva de alimentación la cual posee una inclinación ayudando a que el producto introducido tenga más velocidad y más eficiencia en el rallado, un sistema de impulsión y un rodillo giratorio, estas son utilizadas para triturar o moler diferentes tipos materiales y se encuentran en la industria.

Figura 41. Ralladora de un rodillo con inclinación

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20 para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

2.2.5.7 Alternativa 3: Ralladora de doble rodillo. Esta alternativa consiste en una máquina la cual cuenta con una tolva de alimentación un sistema de impulsión y con dos rodillos estriados los cuales se encuentran situados uno al lado del otro paralelamente entre ejes que giran en dirección contraria, a una velocidad simultanea o diferente, Estas son utilizadas para triturar o moler diferentes tipos materiales el tamaño de este producto depende del espacio entre rodillos, y son utilizadas en la industria.

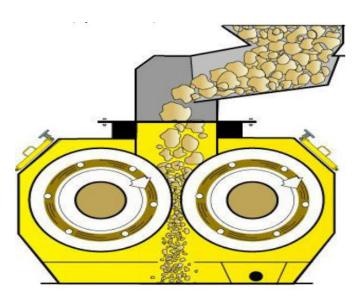
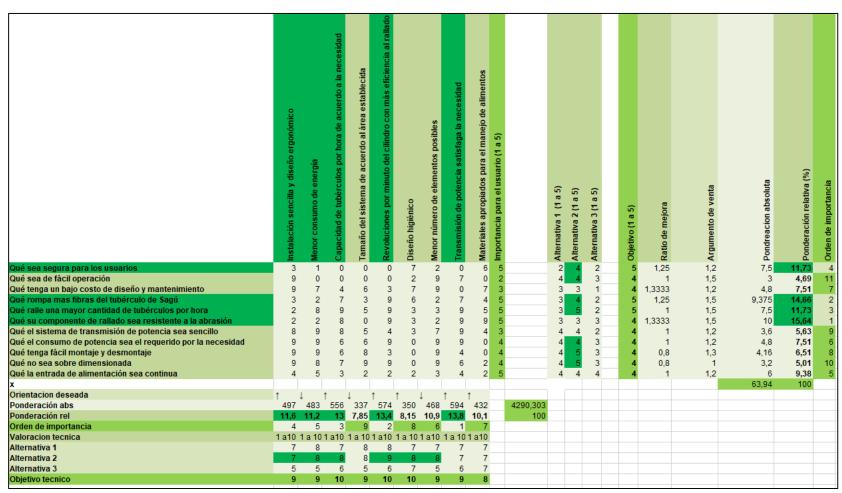



Figura 42. Ralladora de doble rodillo

Fuente: ALIBABA. Trituradora de doble rodillo. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://spanish.alibaba.com/product-detail/2015-baichy-hot-selling-double-roller-crusher-double-geared-roller-crusher-60189900655.html

2.2.5.8 Selección de las alternativas. Se evaluaron las alternativas para los sistemas principales de la máquina por el método QFD, y se escogió posteriormente la alternativa que soluciona el problema, en el sistema de rallado de la máquina, se usara el principio de funcionamiento de la alternativa número 2, ralladora de una rodillo con inclinación, ya que se ajusta más a la necesidad y al objetivo planteado, donde se obtiene una ponderación relativa más alta (Color verde oscuro) en los requerimientos y parámetros que se calificaron con un mayor nivel de importancia anteriormente.

Cuadro 12. Matriz QFD Sistema de rallado del tubérculo

Fuente: Elaboración propia.

2.2.6 Sistema de tamizado del almidón. Este sistema es el que se encarga tamizar el almidón, una vez rallado el tubérculo, se obtiene una mezcla de partículas de diferentes tamaños, la cual está compuesta por fibra y almidón húmedo "Lechada", al realizar el tamizado se separa el almidón húmedo del afrecho o unche, se plantean las siguientes alternativas de solución para el sistema de tamizado del almidón.

Para el planteamiento de las alternativas se tendrá en cuenta los requerimientos del usuario necesarios para cumplir la necesidad y las características técnicas de la máquina según los parámetros establecidos anteriormente, se implementará el método "QFD (despliegue de la función de la calidad)"²⁶, para la selección de alternativa más exacta y óptima para el sistema.

2.2.6.1 Requerimientos del usuario

Cuadro 13. Requerimientos del usuario sistema de tamizado del almidón

REQUERIMIENTOS	IMPORTANCIA				
	1	2	3	4	5
Qué sea segura para los usuarios					X
Qué sea de fácil operación			Х		
Qué tenga un bajo costo de diseño y			Х		
mantenimiento					
Qué separe almidón más					Х
eficientemente					
Qué tamice una mayor cantidad de					Х
masa de rallado por hora					
Qué el sistema de transmisión de			Х		
potencia sea sencillo					
Qué el consumo de potencia sea el				Х	
requerido por la necesidad					
Qué tenga fácil montaje y desmontaje				Х	
Qué no sea sobre dimensionada				Х	
Qué la entrada de alimentación sea					Х
continua					

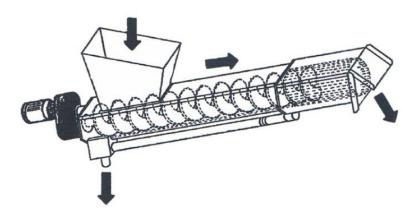
Fuente: Elaboración propia.

²⁶ PDCAHOME. Despliegue de la función calidad (QFD): Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-despliegue-calidad/

2.2.6.2 Requisitos técnicos del diseño.

Cuadro 14. Requisitos técnicos del diseño sistema de tamizado del almidón

PARAMETROS DE DISEÑO	IMPORTANCIA				
	1	2	3	4	5
Instalación sencilla y diseño			Х		
ergonómico					
Menor consumo de energía			Χ		
Capacidad de masa rallada por hora					X
de acuerdo a la necesidad					
Consumo de agua de kg/h de acuerdo					Χ
a la necesidad					
Tamaño del sistema de acuerdo al				X	
área establecida					
Revoluciones por minuto del tamiz					X
separen la mayor cantidad de almidón					
Diseño higiénico					Χ
Menor número de elementos posibles				X	
Transmisión de potencia satisfaga la				X	
necesidad					
Materiales apropiados para el manejo				X	
de alimentos					


Fuente: Elaboración propia.

2.2.6.3 Planteamiento de alternativas.

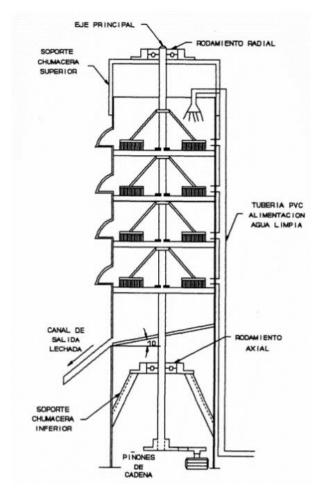
2.2.6.4 Alternativas subsistema de tamizado del almidón. Las alternativas que se plantearan a continuación son evaluadas por su funcionamiento.

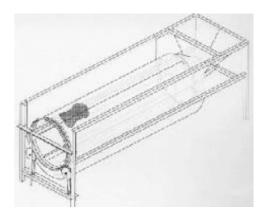
2.2.6.5 Alternativa 1: Tamiz tornillo sin fin o transportador helicoidal. Esta alternativa consiste en una tamizadora de proceso continuo, la cual tamiza por medio de un tornillo sin fin que se encarga de transportar la mezcla obtenida en la anterior etapa del rallado del tubérculo, comprimiéndola contra las paredes donde se encuentra una malla, se obtiene una mayor eficiencia en el tamizado cuando el tamiz realiza un mayor recorrido.

Figura 43. Tamiz tornillo sin fin

Fuente: HIDROMETÁLICA. Escurridor compactador sinfín. [Sitio web]. España. [Consultado 25, marzo 2020]. Disponible en: https://hidrometalica.com/escurridor-compactador-sinfin/

2.2.6.6 Alternativa 2: Tamiz vertical en cascada. Esta alternativa consta de un determinado número de tamices ubicados verticalmente del más grueso al más fino, en cada tamiz se ubican unos cepillos o paletas giratorias para tamizar el almidón y de esta forma tamizando el almidón como su nombre lo indica en cascada.

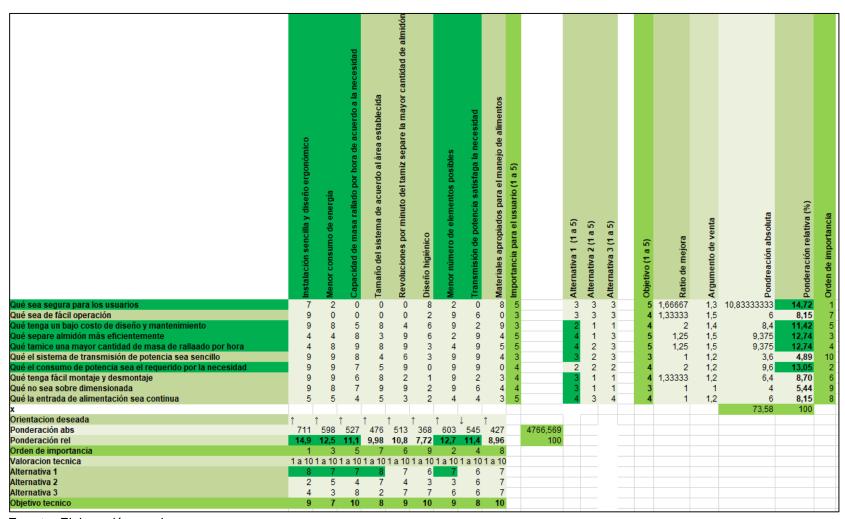



Figura 44. Tamiz vertical en cascada

Fuente: CAYCEDO, Cesar y ZAPATA, Gloria. Diseño de una máquina tamizadora de almidón y afrecho de yuca en cascada. [En línea]. Tesis. Corporación Universitaria Autónoma de Occidente. Cali, Colombia. 1993. [Consultado 25, marzo 2020]. Disponible en: https://red.uao.edu.co/bitstream/10614/3485/1/T0001375.pdf

2.2.6.7 Alternativa 3: Tamiz cilindro rotatorio o centrifuga. Esta alternativa consiste de un tamiz cilíndrico el cual tiene un movimiento giratorio con una malla interna la cual permite realizar el tamizado, para ayudar la operación de tamizar se puede incluir tornillos sin fin, paletas o cepillos, los cuales se encargarán de mover la mezcla contra la malla interna y obtener un mejor tamizado.

Figura 45. Tamiz cilindro rotatorio o centrifuga



CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o% 20saqu.pdf

2.2.6.8 Selección de las alternativas. Se evaluaron las alternativas para los sistemas principales de la máquina por el método QFD, y se escogió posteriormente la alternativa que soluciona el problema, en el sistema de rallado de la máquina, se usara el principio de funcionamiento de la alternativa número 1, Tamiz tornillo sin fin, ya que se ajusta más a la necesidad y al objetivo planteado, donde se obtiene una ponderación relativa más alta (Color verde oscuro) en los requerimientos y parámetros que se calificaron con un mayor nivel de importancia anteriormente.

Cuadro 15. Matriz QFD Sistema de tamizado del almidón

Fuente: Elaboración propia

2.3 ALTERNATIVA FINAL

Cuadro 16. Diseño metodológico de acuerdo a las alternativas seleccionadas

SUBSISTEMA	TIPO		
Estructural	Perfiles cuadrados		
Potencia	Motor eléctrico 3		
Transmisión de potencia	Polea – Correa		
Lavado	Lavadora por aspersión de flujo		
	continuo		
Rallado	Ralladora de un rodillo con inclinación		
Tamizado	Tamizadora con tornillo sin fin		

Fuente: Elaboración propia.

3. DISEÑO DETALLADO DE LA MÁQUINA

El diseño detallado de la máquina para la producción de almidón húmedo de Sagú, se realiza de acuerdo al funcionamiento de las alternativas escogidas en el capítulo anterior, cumpliendo con los parámetros establecidos en cada sistema.

Se realizará el diseño detallado de los componentes de los sistemas de la máquina nombrados anteriormente, a continuación, se mostrará un esquema del proceso de diseño por sistemas.

Sistema de alimentación Sistema de aspersión Sistema de Lavado Sistema de transmisión de potencia Sistema estructural Sistema de alimentación Sistema de Rallado Sistema de transmisión de potencia Máquina para la producción Sistema estructural de almidón húmedo de Sagú Sistema de alimentación Sistema de Tamizado-Sistema de transmisión de potencia Sistema estructural Sistema de Control

Esquema 1. Proceso de diseño por sistemas de la máquina

Fuente: Elaboración propia.

Teniendo en cuenta el esquema anterior, se procede a realizar el diseño.

3.1 DISEÑO DEL SISTEMA DE LAVADO

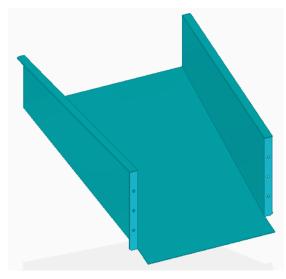

Este sistema es el que se encarga de lavar el tubérculo y extraer las impurezas y raíces con las que proviene al ser recolectado en la cosecha, en el proceso de producción de almidón húmedo de Sagú es necesario realizar un buen lavado de tubérculo para asegurar que en la próxima etapa no queden residuos los cuales puedan afectar la calidad del producto.

Figura 46. Sistema de lavado de la máquina para la producción de almidón húmedo de Sagú

Fuente: Elaboración propia con base en: Solid Edge

3.1.1 Diseño y dimensionamiento de la tolva de alimentación. La tolva de alimentación es por donde ingresará la cantidad estipulada de tubérculos de Sagú a la máquina, esta operación se realiza por medio de un operario encargado, por lo tanto, es necesario realizar el dimensionamiento que cumpla con los requerimientos determinados.

Figura 47. Tolva de alimentación sistema de lavado y extracción de impurezas

Fuente: Elaboración propia

Esta primera tolva de alimentación es por donde se iniciará el proceso de la máquina, y los tubérculos ingresaran a la primera etapa de lavado y extracción de impurezas.

3.1.1.1 Cálculo del volumen requerido de la tolva. Para realizar el cálculo determinado del volumen se procede a utilizar la ecuación general de volumen.

Ecuación 2. Volumen.

$$V_T = rac{m_{bulto\;de\;sag\acute{u}}}{
ho}$$

Fuente: Elaboración propia con base en: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p. ISBN: 9688805424

Donde:

 V_T , Volumen de la tolva de alimentación m^3 $m_{bulto\ de\ sag\'u}$, Masa de un bulto de Sagú Kg ρ , Densidad del tubérculo de Sagú Kg/m^3

La primera tolva de alimentación se diseñará bajo el parámetro que se tiene que introducir por el operario la cantidad de un bulto a la vez, es decir el bulto estándar que manejan en el municipio de Puente Quetame tiene un peso de aproximadamente 60 kg, por lo tanto, esa será la cantidad introducida en la tolva.

Remplazando los valores en la ecuación se obtiene:

$$V_T = \frac{60 \, kg}{363 \, Kg/m^3}$$

$$V_T = 0.16 \, m^3$$

3.1.1.2 Ángulo de inclinación de la tolva. Para el ángulo de inclinación de la tolva de alimentación, se tomó como referencia prototipos realizados por CORPOICA, en donde tiene un prototipo con una inclinación de tolva o "pechero inclinado de 30°"²⁷, con material acero inoxidable, por lo tanto se tomará este ángulo como guía.

Sin embargo, se buscó en otras fuentes, encontrando la siguiente tabla:

Tabla 1. Valores de coeficientes de fricción

Superficie	Coeficiente de Fricción (µ)
Tubérculo - Acero Pulido	0.71 - 0.80
Tubérculo – Suelo	0.98 - 1.03
Tallos – Acero Pulido	0,47 - 0,74
Tallos – Caucho	0.71 - 0.93
Tallos – Suelo	0,67 - 0,96

Fuente: BUITRAGO, German V. *et al.* Determinación de las características físicas y propiedades mecánicas de papa cultivada en Colombia. En: *Revista Brasilera de Engenharia Agricola y Ambiental.* [en línea]. Brasil, 2004. Vol. 8, nro. 1. [consultado el 6 abril, de 2020]. Disponible en:

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662004000100015. ISSN: 1807-1929.

²⁷ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

Se toma el rango de tubérculo-acero pulido, el valor de 0.71 y se procede a remplazar en la ecuación para calcular el ángulo de la tolva de alimentación:

Ecuación 3. Ángulo de inclinación de la tolva

$$\theta = \tan^{-1}(\mu_s)$$

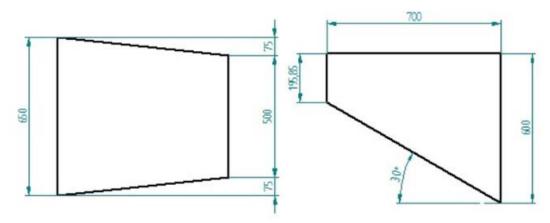
Fuente: BARRETO, Segundo M. y CUSTODIO, Agapito I. Diseño de una máquina automatizada, para el lavado de zanahoria, en el centro poblado menor de Callanca, Distrito de Monsefú, Departamento de Lambayeque. [sitio web]. Tesis. Universidad Señor de Sipán. Pimentel, Perú. 2018. [Consultado 25, marzo 2020]. Disponible en:

http://repositorio.uss.edu.pe/bitstream/handle/uss/4869/Barreto%20Castillo%20-%20Custodio%20Agapito.pdf?sequence=1&isAllowed=y

Donde:

 θ , Angulo de inclinación de la tolva ° μ_s , Coeficiente de fricción

$$\theta = \tan^{-1}(0.71)$$


$$\theta = 35^{\circ}$$

Se evidencia que el ángulo obtenido con ese rango de coeficientes es muy similar al seleccionado como referencia del prototipo de CORPOICA, por lo tanto, se usará el de 30° para los cálculos pertinentes.

3.1.1.3 Dimensiones de la tolva. Se procede a calcular las dimensiones generales de la tolva de alimentación, tomando como referencia el requerimiento estipulado del volumen calculado anteriormente.

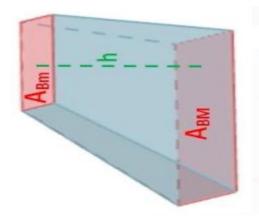
Para el volumen de $0.165 m^3$, se necesitan unas dimensiones generales de:

Figura 48. Dimensiones generales de la tolva de alimentación

Fuente: Elaboración propia con base en: Solid Edge ST10

Estas dimensiones se realizaron aproximando un dimensionamiento acorde para la máquina, y a su vez con el volumen solicitado.

Se empleara acero inoxidable 304 grado alimenticio, ya que el producto que será introducido en la tolva son tubérculos de Sagú, se selecciona el espesor que tendrá la lámina, el cual es calibre 12 o 2.670 mm²⁸ y se realizarán los respectivos cálculos, para determinar si este espesor es el adecuado.


3.1.1.4 Cálculo real del volumen de la tolva. Se procede a remplazar las dimensiones establecidas en la ecuación de volumen de un tronco pirámide irregular²⁹, para corroborar si estas son las indicadas para obtener el volumen requerido.

²⁸ LA PALOMA. Tabla de calibres. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

https://www.lapaloma.com.mx/lapaloma_metales/calibres.html

29 UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

Figura 49. Tronco pirámide irregular

Fuente: UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

Ecuación 4. Volumen de un tronco pirámide irregular

$$V_r = \frac{h}{3} * \left(A_{BM} + A_{Bm} + \sqrt{A_{BM} * A_{Bm}} \right)$$

Fuente: UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

Donde:

 V_r , Volumen real de la tolva de alimentación m^3

h, Distancia entre A_{BM} y A_{Bm} m

 A_{RM} , Área de base del rectángulo mayor m^2

 A_{Bm} , Área de base del rectángulo menor m^2

Remplazando los valores en la ecuación de obtiene:

$$V_r = \frac{0.7 \, m}{3} * \left((0.6 \, m * 0.5 \, m) + (0.19585 \, m * 0.65 \, m) + \sqrt{(0.6 \, m * 0.5 \, m) * (0.19585 \, m * 0.65 \, m)} \right)$$

$$V_r = 0.15 \, m^3$$

Con el fin de comprobar las dimensiones establecidas se utiliza el software de diseño Solid Edge, el cual genera el volumen de la tolva más exactamente, evidenciando que las dimensiones cumplen con dicho volumen.

Propiedades físicas Global Principales Definidas por el usuario Volumen: Área de superficie: Sistema de coordenadas: Masa: 0,000 kg 156629510,429 mm^3 1854859,47 mm^2 Espacio modelo Centro de masa Centro de volumen Mostrar símbolo Mostrar símbolo X: 395,02 mm X: 395,02 mm Densidad: Y: -325,00 mm Y: -325,00 mm 0.000 kg/m³ Z: -16,62 mm Z: -16,62 mm Cambian Momentos de inercia de la masa Precisión (de 0 a 1): boc -0,000 kg-m^2 0,000 kg-m^2 0.000 kg-m^2 0.000 kg-m² 0.000 kg-m^2 0.000 kg-m² ✓ Actualizar al guardar Las propiedades físicas están actualizadas. Actualizar Guardar como... Volumen: ,16 Area de la superficie: 1,85

Figura 50. Verificación volumen de la tolva Solid Edge ST10

Fuente: Elaboración propia con base en: Solid Edge ST10

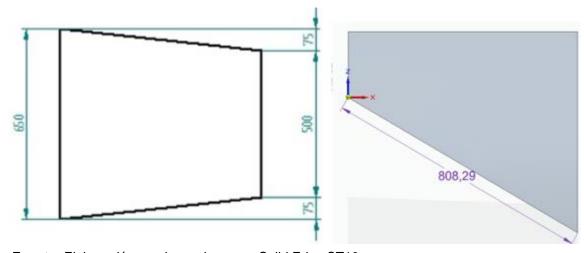
3.1.1.5 Cálculo del área de contacto tubérculos – tolva. Para saber cuál es el área de contacto que los tubérculos de Sagú ocupan sobre la tolva, se procede a calcular con la siguiente ecuación:

Ecuación 5. Área de contacto

$$A_c = \frac{L * l}{2} * H$$

Fuente: BARRETO, Segundo M. y CUSTODIO, Agapito I. Diseño de una máquina automatizada, para el lavado de zanahoria, en el centro poblado menor de Callanca, Distrito de Monsefú, Departamento de Lambayeque. [sitio web]. Tesis. Universidad Señor de Sipán. Pimentel, Perú. 2018. [Consultado 25, marzo 2020]. Disponible en: http://repositorio.uss.edu.pe/bitstream/handle/uss/4869/Barreto%20Castillo%20-%20Custodio%20Agapito.pdf?sequence=1&isAllowed=y

Donde:


 A_c , Área de contacto de los tubérculos de sagú y la tolva m^2

L, Longitud del lado mayor de la tolva m

l, Longitud del lado menor de la tolva m

H, Altura de la pared inclinada de la tolva m

Figura 51. Dimensiones generales de la pared de área de contacto de la tolva

Fuente: Elaboración propia con base en: Solid Edge ST10

La altura de la inclinación se obtiene con ayuda del software Solid Edge, dando 808.29 mm es decir 0.80829 m.

Remplazando los valores en la ecuación se obtiene:

$$A_c = \frac{0.65 \, m * 0.5 \, m}{2} * 0.80829 \, m$$

$$A_c = 0.1313 m^2$$

3.1.1.6 Cálculo de la fuerza ejercida sobre la tolva. La carga de tubérculos de Sagú que están en la tolva de alimentación, generan una fuerza sobre el área de contacto anteriormente calculada, por lo tanto, se procede a utilizar la siguiente ecuación:

Ecuación 6. Fuerza

$$Fuerza = m_{bulto} * g$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Dónde:

F, Fuerza ejercida por los tubérculos sobre la tolva N m_{bulto} , Masa de un bulto de tubérculos de Sagú Kg g, Gravedad m/s^2

Remplazando los valores en la ecuación se obtiene:

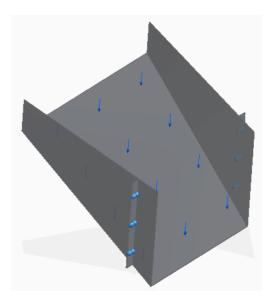
$$Fuerza = 60 kg * 9.8 m/s^2$$

$$Fuerza = 588 N$$

3.1.1.7 Análisis de la tolva con software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de

diseño Solid Edge ST10, si la tolva de alimentación con las dimensiones y el material establecidos, soporta la carga de tubérculos de sagú anteriormente calculada.

Se realiza el siguiente tipo de mallado para la simulación en el software:


Figura 52. Información del tipo de malla para la respectiva simulación

Tipo de mallado	Tetraédrico
Número total de cuerpos mallados	1
Número total de elementos	14.821
Número total de nodos	30.334
Tamaño subjetivo de malla (1-10)	9

Fuente: Elaboración propia con base en: Solid Edge ST10

Se ubica la carga anteriormente calculada, y se asumen apoyos fijos en la platina de sujeción.

Figura 53. Cargas y apoyos en la tolva del sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10 **3.1.1.7.1 Desplazamiento en la tolva.** Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la tolva de alimentación es de 0.5 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

Figura 54. Desplazamiento en la tolva sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.1.7.2 Tensión en la tolva. El esfuerzo Von Misses de la tolva de alimentación esta entre 2x10-6 MPa a 8 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 255 MPa, indicando que el diseño de la tolva es conveniente para una carga de tubérculos de Sagú de 60 kg.

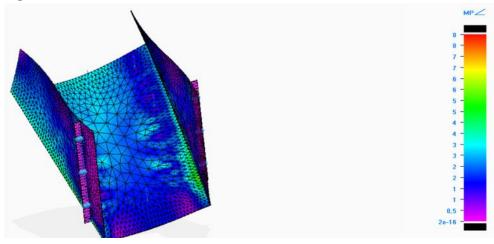
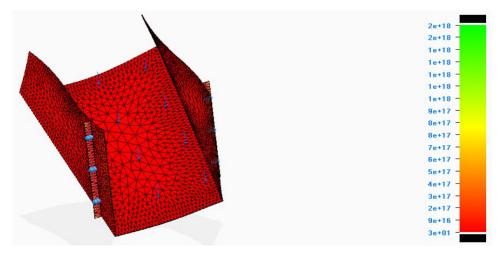



Figura 55. Tensión de Von Misses en la tolva sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.1.7.3 Factor de seguridad de la tolva. Se evidencia que el factor de seguridad mínimo es 30, es decir que las dimensiones calculadas y estipuladas anteriormente para la tolva de alimentación son las correctas.

Figura 56. Factor de seguridad en la tolva sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.2 Cálculo y dimensionamiento del Cilindro rotatorio. El cilindro rotatorio del sistema de lavado es donde se depositarán los tubérculos de Sagú previamente ingresados por la tolva de alimentación, para posteriormente ser lavados, este se encuentra en constante rotación

Figura 57. Cilindro rotatorio del sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

Para el dimensionamiento del cilindro rotatorio de la lavadora, es necesario tener en cuenta los siguientes parámetros:

- Flujo másico de la máquina: Como se estableció previamente en el Cuadro 4, el flujo másico o capacidad de la máquina en general será 500 - 550 kg/h.
- Densidad del tubérculo de Saqú: Recopilando información en distintos documentos, en especial un informe técnico por CORPOICA, se obtiene que la densidad de este tubérculo es de 363 Kg/m3³⁰.
- Velocidad del cilindro: Según un informe técnico realizado por CORPOICA, en el cual se estudiaron varios prototipos de lavado, se llegó a la conclusión que uno de los rangos más óptimos de revoluciones por minuto para los tambores son 24 – 48, se observan los mejores resultados, mejor limpieza del tubérculo y desprendimiento de impurezas para pequeñas capacidades, y un rango de 45 – 50 rpm³¹ para medias capacidades, donde se toma como referencia 45 rpm para la necesidad a cubrir del municipio y se efectuara los cálculos con este valor.
- Tiempo de la etapa de lavado: Recopilando información en distintos documentos, se obtiene que para ejecutar un lavado adecuado se necesita un tiempo aproximado de 5 - 10 minutos, se trabajará con el tiempo menor es decir 5 minutos para disminuir los tiempos del proceso.
- 3.1.2.1 Cálculo del volumen del Cilindro. Para determinar el volumen del cilindro que tendrá la lavadora, se calculará a partir de una ecuación tomada del libro "Handbook of Industrial Drying, Rotary Drying" para fines de tambores rotacionales.

³⁰ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elab oracion%20de%20harina%20de%20achira.pdf

³¹ lbíd., p. 44.

³² MUJUMDAR, Arun S. Handbook of Industrial Drying. [en línea]. Editorial CRC Press, Taylor & Francis Group. 2015. [consultado el 6 abril, de 2020]. Capitulo 7. 151 p. Disponible en: http://www.cementechnology.ir/Library/Chem.3.pdf . ISBN: 978-1-4665-9665-8.

Ecuación 7. Volumen de un tambor rotacional

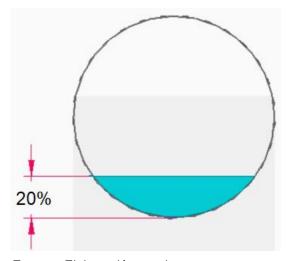
$$V = \frac{\mathsf{t} * \mathsf{F}}{\mathsf{H} * \mathsf{\rho}}$$

Fuente: MUJUMDAR, Arun S. Handbook of Industrial Drying. [en línea]. Editorial CRC Press, Taylor & Francis Group. 2015. [consultado el 6 abril, de 2020]. Capitulo 7. 169 p. Disponible en: http://www.cementechnology.ir/Library/Chem.3.pdf . ISBN: 978-1-4665-9665-8.

Donde:

V, Volumen del cilindro o tambor m^3

t, Tiempo de la etapa de lavado h


F, Flujo másico o capacidad de la maquina Kg/h

H, Porcentaje de tubérculos en el cilindro %

ρ, Densidad del tubérculo de Sagú Kg/m^3

Porcentaje de tubérculos en el cilindro: Este porcentaje corresponde a la altura que ocupa horizontalmente los tubérculos en el cilindro, se trabajara para los cálculos correspondientes con un porcentaje del 20% de 100% del diámetro interno del cilindro, ya que se desea diseñar la máquina para un estado crítico, sin embargo, para que haya un lavado óptimo se recomienda utilizar un porcentaje de llenado del 15%, como se puede observar en la siguiente imagen:

Figura 58. Porcentaje de llenado del cilindro

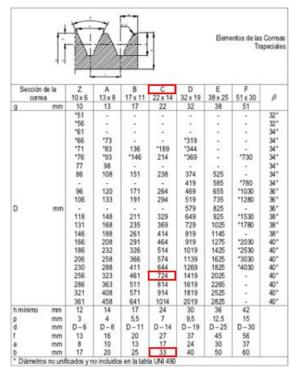
Fuente: Elaboración propia

Remplazando los valores en la ecuación se obtiene:

$$V = \frac{5 \text{ minutos} * \frac{1 \text{ hora}}{60 \text{ minutos}} * 550 \frac{kg}{h}}{20\% * 363 \frac{kg}{m^3}}$$

$$V = 0.6313 \text{ m}^3$$

3.1.2.2 Cálculo del diámetro del Cilindro. Recopilando información en distintos documentos y visitas de campo, en especial un informe técnico realizado por CORPOICA, en el cual se estudiaron varios prototipos de lavado, y teniendo capacidades de "700 Kilogramos de rizomas por hora, cuentan con 75 cm de diámetro"³³, y en las visitas realizadas en los municipios las máquinas que tienen actualmente de aproximadamente 450 Kg/h tienen diámetros de 70 cm, evidenciando que en su interior se ubica un eje el cual sostiene el tambor, causando un desaprovechamiento del espacio y un lavado inadecuado, se llegó a la conclusión que el diámetro que se ajusta más a los requerimientos establecidos por los pequeños productores del municipio es 65 cm, ya que es un diámetro proporcional a la carga y no es sobredimensionado.


Para ahorrar costos tanto de fabricación e instalación, se utilizará el diámetro exterior del tambor como polea, y a su vez ayudando a reducir la velocidad del cilindro, por lo tanto, se procederá a seleccionar la polea más adecuada a estos requerimientos.

101

_

³³ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Tabla 2. Elementos correas trapeciales

Fuente: Elaboración propia con base en: BARBOSA Jaime L. Dibujo mecánico. [en línea]. [Consultado 29, marzo 2020]. Capitulo 19. 8 p. Disponible en: https://es.slideshare.net/adrianperezdi/polea-y-correas

Se selecciona diámetro exterior de polea estandarizado 0.724 m perfil en C, ya que se ajusta al diámetro aproximado del cilindro establecido anteriormente, con una altura de diente especificada de 33 mm se procede a calcular el diámetro exterior del cilindro real.

Ecuación 8. Diámetro exterior del cilindro

$$Dc_r = D_p - (2*b)$$

Fuente: Elaboración propia con base en: BARBOSA Jaime L. Dibujo mecánico. [en línea]. [Consultado 29, marzo 2020]. Capitulo 19. 8 p. Disponible en: https://es.slideshare.net/adrianperezdi/polea-y-correas

Donde:

 Dc_r , Diámetro exterior del cilindro real m

 D_p , Diámetro exterior polea estandarizada m

b, Altura total del diente mm

Remplazando en la ecuación se obtiene lo siguiente:

$$Dc_r = 0.724 m - (2 * 0.033 m)$$

$$Dc_r = 0.658 \, m$$

Se concluye que el diámetro aproximado anteriormente y el diámetro real calculado, no presentan una gran variación, sin embargo, para calculo pertinentes se estipulara un diámetro exterior de cilindro 0.658 m.

3.1.2.3 Cálculo de la longitud del Cilindro. La longitud se haya con respecto a la ecuación del volumen de un cilindro, despejando de esta, la longitud.

Ecuación 9. Volumen de un Cilindro

$$V=\frac{\pi*D^2*L}{4}$$

Fuente: UNIVERSOFORMULAS. Volumen de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-cilindro/

Despejando la longitud se obtiene:

$$L = \frac{4 * V}{\pi * D^2}$$

Remplazando en la ecuación se obtiene lo siguiente:

$$L = \frac{4 * 0.6313 \, m^3}{\pi * (0.658m)^2}$$

Para realizar cálculos más cómodos en cuanto a la etapa de fabricación de la máquina y encontrar materiales más fácilmente, se aproxima la longitud a un valor exacto.

$$L = 2 m$$

3.1.2.4 Selección del espesor de la pared del Cilindro. La máquina tiene contacto con alimentos, por lo tanto, es necesario el uso de materiales aptos para tal fin, se debe tener en cuenta un diseño higiénico donde se utilizará acero inoxidable AISI 304 en partes donde la máquina entre en contacto con dicho producto ya que es de grado alimenticio³⁴ y posee características deseadas y económicas.

El espesor de la lámina que se seleccionó para el cilindro es "calibre 12 o 2.670 mm"³⁵ y se realizarán los respectivos cálculos, para determinar si este espesor es el adecuado.

3.1.2.5 Ranuras de salida de impurezas del Cilindro. Se realizarán ranuras en la superficie del cilindro de lavado, con el fin de generar una salida a las impurezas que serán removidas del tubérculo de Sagú a medida que se efectué el lavado, estas ranuras serán dimensionadas con base en la medida promedio de un tubérculo indicada en la sección <u>1.1.1</u>, impidiendo que este se salga por ahí, tendrán las siguientes dimensiones y ubicación:

 ³⁴ COOKINOX. Que es el acero inoxidable grado alimenticio. [en línea]. Mexico. [consultado el 6 abril, de 2020]. Disponible en: https://www.cookinox.com/que-es-el-acero-inoxidable-grado-alimenticio/
 ³⁵LA PALOMA. Tabla de calibres. [en línea]. Mexico. [consultado el 6 abril, de 2020]. Disponible en: https://www.lapaloma.com.mx/lapaloma_metales/calibres.html

245

Figura 59. Dimensiones y ubicación de las ranuras del Cilindro

Fuente: Elaboración propia con base en: Solid Edge ST10

Las medidas se encuentran en mm, se recomienda realizar un desbarbado en las ranuras para evitar que el tubérculo de Sagú tenga daños superficiales.

3.1.2.6 Ángulo de inclinación del Cilindro. Para que el proceso sea de forma continua como se estableció anteriormente, es necesario contar con un ángulo de inclinación en el cilindro, para que de esta manera los tubérculos de Sagú se desplacen longitudinalmente, sin embargo, hay que cumplir con un parámetro estipulado del tiempo que los tubérculos deben permanecer dentro del cilindro para un lavado eficiente, se calculará a partir de una ecuación tomada del libro "Handbook of Industrial Drying, Rotary Drying" para fines de tambores rotacionales.

³⁶ MUJUMDAR, Arun S. Handbook of Industrial Drying. [en línea]. Editorial CRC Press, Taylor & Francis Group. 2015. [consultado el 6 abril, de 2020]. Capitulo 7. 151 p. Disponible en: http://www.cementechnology.ir/Library/Chem.3.pdf . ISBN: 978-1-4665-9665-8.

105

Ecuación 10. Tiempo de la etapa de lavado

$$t = \frac{0.23 * L}{D * N^{0.9} * \tan \alpha}$$

Fuente: MUJUMDAR, Arun S. Handbook of Industrial Drying. [en línea]. Editorial CRC Press, Taylor & Francis Group. 2015. [consultado el 6 abril, de 2020]. Capitulo 7. 155 p. Disponible en: http://www.cementechnology.ir/Library/Chem.3.pdf . ISBN: 978-1-4665-9665-8.

Donde:

t, Tiempo de la etapa de lavado s

L, Longitud del cilindro *m*

D, Diámetro exterior del cilindro m

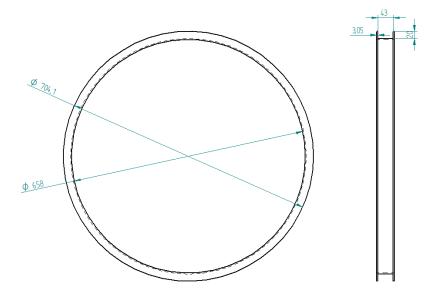
N, Velocidad de giro del cilindro rpm

α, Angulo de inclinación del cilindro °

Despejando de la ecuación anterior el ángulo de inclinación del cilindro de lavado se obtiene:

$$\alpha = \tan^{-1} \left(\frac{0.23 * L}{D * N^{0.9} * t} \right)$$

Remplazando los valores en la ecuación se obtiene:


$$\alpha = \tan^{-1} \left(\frac{0.23 * 2 m}{0.658 m * 45 rpm^{0.9} * 5 min} \right)$$

$$\alpha = 0.26 ^{\circ}$$

Se tomará un ángulo de inclinación de 1°, para facilitar la etapa de fabricación de la máquina.

3.1.2.7 Aros Guía del Cilindro. Los aros guía ayudan al cilindro de lavado a generar su movimiento de rotación, están ubicados en la parte exterior del cilindro, son dos aros y se les estipula las siguientes dimensiones:

Figura 60. Dimensiones aro guía

Fuente: Elaboración propia

3.1.2.8 Cálculo de la masa de tubérculos Sagú en el Cilindro. Para determinar la masa de tubérculos de sagú en el cilindro, asumiendo que el cilindro se encuentra en reposo, se empleará la siguiente ecuación:

Ecuación 11. Masa de tubérculos en el Cilindro

$$m_{Sag\acute{\mathrm{u}}} = V * H * \rho$$

Fuente: Elaboración propia con base en: LLORENS, Maribel. Propiedades caracteristicas. 2008. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://es.slideshare.net/guest0996a4/graficos-densidad

Donde:

 $m_{{\it Sag}\circ}$, Masa de tubérculos de Sagú ${\it Kg}$

V, Volumen del cilindro m^3

H, Porcentaje de llenado del cilindro %

 ρ , Densidad del tubérculo de Sagú Kg/m^3

Remplazando los valores en la ecuación se obtiene:

Se trabajará para los cálculos correspondientes con un porcentaje del 20% de 100% del diámetro interno del cilindro, ya que se desea diseñar la máquina para un estado crítico.

$$m_{Sag\acute{u}} = 0.6313 \ m^3 * 20\% * 363 \ Kg/m^3$$

$$m_{Sag\acute{\mathrm{u}}}=45.83~Kg$$

3.1.2.9 Cálculo del área de contacto tubérculos – Cilindro. Para determinar el área de contacto que los tubérculos de Sagú ocupan sobre el cilindro, asumiendo que este se encuentra en reposo, se procede a calcular con las siguientes ecuaciones:

Ecuación 12. Área lateral de un Cilindro

$$A_{Lateral\ de\ cilindro} = 2 * \pi * r * L$$

Fuente: UNIVERSOFORMULAS. Área de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-cilindro/

Ecuación 13. Área de la base de un Cilindro

$$A_{Base\ de\ cilindro} = \pi * r^2$$

Fuente: UNIVERSOFORMULAS. Área de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-cilindro/

Ecuación 14. Área total de un Cilindro

$$A_{Total} = 2 * A_{Base de cilindro} + A_{Lateral de cilindro}$$

Fuente: UNIVERSOFORMULAS. Área de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-cilindro/

Ecuación 15. Área de contacto tubérculos – Cilindro

$$A_{Masa-cilindro} = A_{Total} * H$$

Fuente: Elaboración propia con base en: UNIVERSOFORMULAS. Área de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-cilindro/

Donde:

 $A_{Lateral\;de\;cilindro}$, Área lateral de un cilindro m^2

 $A_{Base\ de\ cilindro}$, Área de la base de un cilindro m^2

 A_{Total} , Área total de un cilindro m^2

 $A_{Masa-cilindro}$, Área de contacto entre los tubérculos de Sagú y el cilindro m^2

L, Longitud del cilindro m

r, Radio del cilindro m

H, Porcentaje de tubérculos de Sagú en el cilindro %

Remplazando los valores en la <u>Ecuación 12</u>, se obtiene:

$$A_{Lateral\ de\ cilindro} = 2 * \pi * \left(\frac{0.658\ m}{2}\right) * 2\ m$$

$$A_{Lateral\ de\ cilindro} = 4.1343\ m^2$$

Remplazando los valores en la Ecuación 13, se obtiene:

$$A_{Base\ de\ cilindro} = \pi * \left(\frac{0.658\ m}{2}\right)^2$$

$$A_{Base\ de\ cilindro}=0.3400\ m^2$$

Se procede a calcular el área total del cilindro remplazando los valores en la <u>Ecuación 14</u>, se obtiene:

$$A_{Total} = 2 * 0.3400 \ m^2 + 4.1343 \ m^2$$

$$A_{Total}=4.8143\,m^2$$

Para saber el área de contacto entre los tubérculos de Sagú y el cilindro, se asume un porcentaje de llenado del 20% de 100% del diámetro interno del cilindro, ya que se desea diseñar la máquina para un estado crítico, remplazando en la <u>Ecuación</u> 15, se obtiene:

$$A_{Masa-cilindro} = 4.8143 m^2 * 20\%$$

$$A_{Masa-cilindro} = 0.96 m^2$$

3.1.2.10 Cálculo de la fuerza de la carga de tubérculos sobre el Cilindro. La carga de tubérculos de Sagú que están en el interior del cilindro, generan una fuerza sobre el área de contacto anteriormente calculada, por lo tanto, se procede a utilizar la siguiente ecuación:

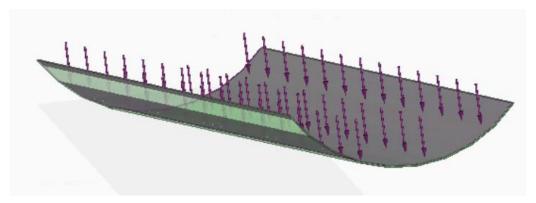
Ecuación 16. Fuerza sobre el Cilindro

$$F = m_{Sag\acute{\mathbf{u}}} * g$$

Fuente: Elaboración propia con base en: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Dónde:

F, Fuerza de la carga sobre el cilindro N $m_{Sag\acute{\mathbf{u}}}$, Masa de tubérculos de Sagú Kg g, Gravedad m/s^2


Remplazando los valores en la ecuación se obtiene:

$$F = 45.83 \, Kg * 9.8 \, m/s^2$$

$$F = 449.134 \, N$$

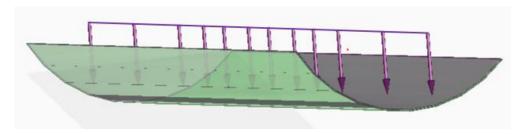
Esta fuerza es equivalente al peso de los tubérculos de Sagú distribuidos de esta forma.

Figura 61. Carga de Tubérculos de Sagú sobre el Cilindro

Por lo tanto, se puede analizar como una carga distribuida.

Ecuación 17. Carga distribuida

$$Carga\ distribuida = rac{Fuerza}{Longitud}$$


Fuente: Elaboración propia con base en: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

Remplazando los valores en la ecuación se obtiene:

$$Carga\ distribuida = \frac{449.134\ N}{2\ m}$$

$$Carga\ distribuida = 224.567\ N/m$$

Figura 62. Carga distribuida de tubérculos de Sagú sobre el Cilindro

Se procede a calcular el área de la carga distribuida y se ubica en el centro de área.

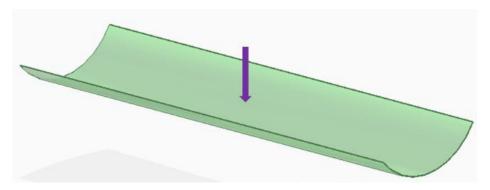
Ecuación 18. Carga puntual

$$F_{puntual} = A_{cargadistribuida} = Carga distribuida * L$$

Fuente: Elaboración propia con base en: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

Remplazando los valores en la ecuación se obtiene:

$$F_{puntual} = A_{cargadistribuida} = 224.567 \ N/m * 2m$$


$$F_{puntual} = A_{cargadistribuida} = 449.134 \ N$$

$$Ubicacion_{Fpuntual} = \frac{L}{2}$$

$$Ubicacion_{Fpuntual} = \frac{2 \ m}{2}$$

$$Ubicacion_{Fpuntual} = 1 \ m$$

Figura 63. Carga puntual de Tubérculos y ubicación sobre el Cilindro

3.1.2.11 Cálculo de la fuerza centrífuga ejercida en el Cilindro. Se procederá a calcular la fuerza centrífuga que se ejerce en el interior del cilindro estando en movimiento y con la carga de tubérculos de Sagú.

Ecuación 19. Fuerza Centrifuga

$$F_c = m_{Sag\acute{\mathbf{u}}} * W^2 * r$$

Fuente: Elaboración propia con base en: GALLEGOS, Erika. Centrifugación. [En linea]. 2011. [Consultado 28, marzo 2020]. Disponible en: https://pt.slideshare.net/barluc/centrifugacion-10493280/11

Donde:

 F_c , Fuerza centrifuga N $m_{Sag\acute{\mathbf{u}}}$, Masa de tubérculos de Sagú Kg W, Velocidad de giro del cilindro $\frac{Rad}{s}$ r, Radio del cilindro m

Remplazando los valores en la ecuación se obtiene:

$$F_c = 45.83 \, Kg * \left(45 \, rpm * \frac{2 * \pi}{60}\right)^2 * \left(\frac{0.658 \, m}{2}\right)$$

$$F_c = 334.83 \, N$$

Comparando las fuerzas calculadas anteriormente se puede evidenciar que la fuerza ejercida por la carga de tubérculos de sagú del cilindro estando en reposo es mayor que la fuerza centrífuga con el cilindro en movimiento, ya que esta fuerza considera la rotación del cilindro y asume que los tubérculos estarán distribuidos en todo su perímetro, por lo tanto, se procede a trabajar los demás cálculos con la máxima fuerza de 449.134 N, ya que no se tendrá dicha distribución.

3.1.2.12 Análisis del Cilindro con el software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si el cilindro de lavado con las dimensiones y el material establecidos, soporta la carga de tubérculos de sagú anteriormente calculada.

Se realiza el siguiente tipo de mallado para la simulación en el software:

Figura 64. Información del tipo de malla para la respectiva simulación

Tipo de mallado	Tetraédrico
Número total de cuerpos mallados	3
Número total de elementos	150.598
Número total de nodos	325.196
Tamaño subjetivo de malla (1-10)	7

Fuente: Elaboración propia con base en: Solid Edge ST10

Se ubica la carga anteriormente calculada en el interior del cilindro de lavado, y se asumen apoyos fijos en donde irán las ruedas de soporte en los aros guía.

3.1.2.12.1 Desplazamiento en el Cilindro. Se evidencia que el desplazamiento o deformación máxima a la que estará sometido el cilindro de lavado es de 0,0703 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

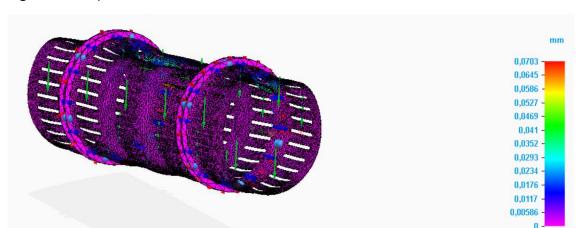


Figura 65. Desplazamiento del Cilindro sistema de lavado

3.1.2.12.2 Tensión en el Cilindro. El esfuerzo Von Misses del cilindro de lavado esta entre 0,000259 MPa a 3 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 255 MPa, indicando que el diseño del cilindro es conveniente para una carga asignada.

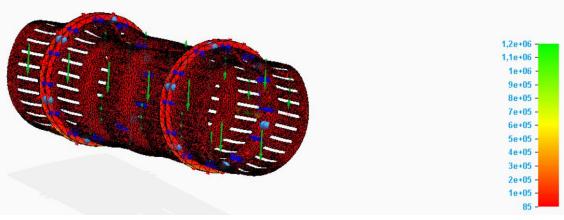



Figura 66. Tensión de Von Misses en el Cilindro sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

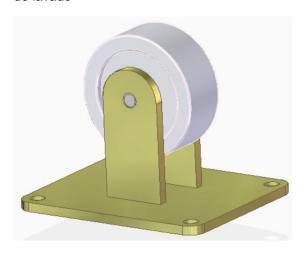

3.1.2.12.3 Factor de seguridad del Cilindro. Se evidencia que el factor de seguridad mínimo es 85 es decir que las dimensiones calculadas y estipuladas anteriormente para el cilindro de lavado son las correctas.

Figura 67. Factor de seguridad en el Cilindro sistema de lavado

3.1.3 Selección de las ruedas que soportan el Cilindro. Las ruedas de soporte son aquellas que ayudan a la rotación del cilindro de lavado y su vez lo soportan.

Figura 68. Ruedas de Soporte del sistema de lavado

Fuente: Elaboración propia

Para seleccionar las ruedas que soportan el cilindro lavador, es necesario saber el peso total que se está ejerciendo por los tubérculos de Sagú, el cilindro, y los aros que actúan como guía sobre las ruedas.

3.1.3.1 Calculo de la masa del Cilindro. La masa del Cilindro de lavado se determina a partir de la siguiente ecuación:

Ecuación 20. Masa del Cilindro de lavado

$$m_{cilindro} = V_{cilindro} * \rho$$

Fuente: Elaboración propia con base en: LLORENS, Maribel. Propiedades caracteristicas. 2008. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://es.slideshare.net/guest0996a4/graficos-densidad

Donde:

 $m_{cilindro}$, Masa de cilindro de lavado Kg $V_{cilindro}$, Volumen del cilindro m^3 ρ , Densidad del material del cilindro Kg/m^3

El volumen del cilindro se calcula de la siguiente forma:

Ecuación 21. Volumen del Cilindro de lavado hueco

$$V_{cilindro} = V_{Extcilindro} - V_{Intcilindro}$$

Fuente: EKUATIO. Volumen y área de un cilindro. Ejercicios resueltos paso a paso. [Sitio web]. [consultado el 9 abril, de 2020]. Disponible en: https://n9.cl/dtng

Donde:

 $V_{Extcilindro}$, Volumen del diámetro exterior del cilindro m^3 $V_{Intcilindro}$, Volumen del diámetro interior del cilindro m^3

Remplazando los valores se obtiene:

$$V_{Extcilindro} = r_{Ext}^{2} * \pi * L$$

$$V_{Extcilindro} = \left(\frac{0.658 \, m}{2}\right)^{2} * \pi * 2 \, m$$

$$V_{Extcilindro} = 0.6801 \, m^3$$

$$V_{Intcilindro} = r_{Int}^2 * \pi * L$$

$$V_{Intcilindro} = \left(\frac{0.658 \, m - (2 * 0.00267 \, m)}{2}\right)^2 * \pi * 2 \, m$$

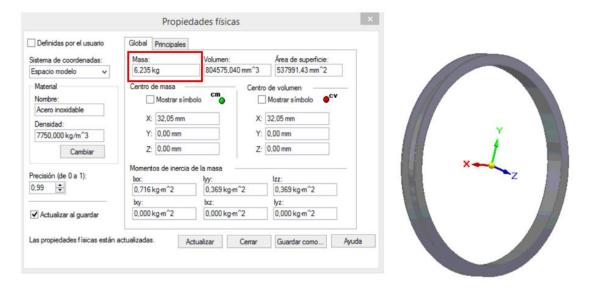
$$V_{Intcilindro} = 0.6691 \, m^3$$

Se procede a calcular el volumen total del cilindro, remplazando los valores:

$$V_{cilindro} = V_{Extcilindro} - V_{Intcilindro}$$
 $V_{cilindro} = 0.6801 \ m^3 - 0.6691 \ m^3$ $V_{cilindro} = 0.011 \ m^3$

La densidad del acero inoxidable 304 que es el material que se empleará ya que es de grado alimenticio y el cilindro entrará en contacto directo con el tubérculo, con ayuda del software Solid Edge, se muestran las propiedades de este acero, donde se tiene el valor de su densidad.

Figura 69. Densidad del Acero inoxidable 304 Software Solid Edge


Fuente: Elaboración propia con base en: Solid Edge ST10

Procedemos a calcular la masa del cilindro empleando la Ecuación 20.

$$m_{cilindro} = V_{cilindro} * \rho$$

$$m_{cilindro} = 0.011 \ m^3 * 8027,000 \ Kg/m^3$$

$$m_{cilindro} = 88.3 \ Kg$$

3.1.3.2 Masa de los aros guía. Para saber la masa de los aros guía, se procede a utilizar el software Solid Edge ST10, asignándole el material acero inoxidable, con una densidad 7750,000 $\frac{Kg}{m^3}$, se obtiene los siguientes datos:

Figura 70. Masa del aro guía software Solid Edge

Fuente: Elaboración propia con base en: Solid Edge ST10

$$m_{arogu\'ia} = 6.235 \, Kg$$

3.1.3.3 Carga total en el Cilindro de lavado. El peso total en el cilindro de lavado es la sumatoria de la masa del cilindro, masa de los tubérculos de Sagú contenidos en su interior calculado en la sección <u>3.1.2.8</u> y masa de los aros guía que están ubicados en la parte externa del cilindro, multiplicados por la gravedad.

$$m_{TOTAL} = m_{Sag\'u} + m_{Cilindro} + m_{arogu\'ua}$$

Remplazando los valores se obtiene:

$$m_{TOTAL} = 45.83 \, Kg + 88.3 \, Kg + (2 * 6.235 \, Kg)$$

$$m_{TOTAL} = 146.6 \, Kg$$

La carga total se calcula con la siguiente ecuación:

Ecuación 22. Carga total en el Cilindro de lavado

$$W_{TOTAL} = m_{TOTAL} * g$$

Fuente: Elaboración propia con base en: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

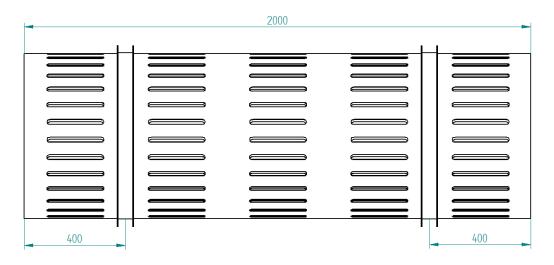
Donde:

 m_{TOTAL} , peso total del cilindro de lavado Kg g, Gravedad m/s^2

Remplazando los valores se obtiene:

$$W_{TOTAL} = 146.6 \, Kg * 9.8 \, m/s^2$$

$$W_{TOTAL} = 1436.68 N$$


3.1.3.4 Cálculo de las reacciones en las ruedas de soporte. Para determinar las reacciones que se generan en las ruedas que soportan el cilindro de lavado, se analizará el cilindro como una viga con apoyos fijos, la carga total a la que estarán sometidas las ruedas, será la carga total calculada anteriormente, se ubicará como una carga distribuida.

$$W_1 = \frac{1436.68 \, N}{2 \, m}$$

$$W_1 = 718.34 \, N/m$$

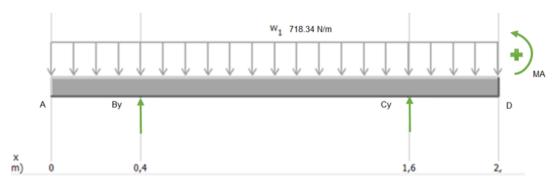

Se procede a realizar el Diagrama de cuerpo libre del cilindro de lavado.

Figura 71. Ubicación de los aros guía en el Cilindro de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

Figura 72. Diagrama de cuerpo libre del Cilindro de lavado

Fuente: Elaboración propia con base en: MDSolids 4.0

Se procede a determinar las ecuaciones para calcular las reacciones en los apoyos es decir las ruedas de soporte:

$$\sum F_Y = 0$$

$$B_Y + C_Y - W_1 = 0$$

$$B_Y + C_Y = W_1$$

1.
$$B_Y = W_1 - C_Y$$

$$\sum M_A = 0$$

$$(B_Y * 0.4 m) + (C_Y * 1.6 m) - (W_1 * 1 m) = 0$$

$$2.(B_Y * 0.4 m) + (C_Y * 1.6 m) = (W_1 * 1 m)$$

Remplazando la ecuación 1 en 2 se tiene:

$$((W_1 - C_y) * 0.4 m) + (C_Y * 1.6 m) = (W_1 * 1 m)$$

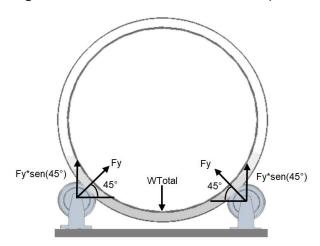
$$\left(\left((718.34 \, N/m * 2m) - C_y \right) * 0.4 \, m \right) + \left(C_Y * 1.6 \, m \right) = \left((718.34 \, N/m * 2m) * 1 \, m \right)$$

$$((1436.68 N - C_y) * 0.4 m) + (C_Y * 1,6 m) = (1436.68 N * 1 m)$$

$$574,672 Nm - C_y * 0.4 m + (C_Y * 1.6 m) = 1436.68 Nm$$

$$C_{\nu}(-0.4 m + 1.6 m) = 1436.68 Nm - 574,672 Nm$$

$$C_y = \frac{1436.68 \, Nm - 574,672 \, Nm}{(-0.4 \, m + 1.6 \, m)}$$

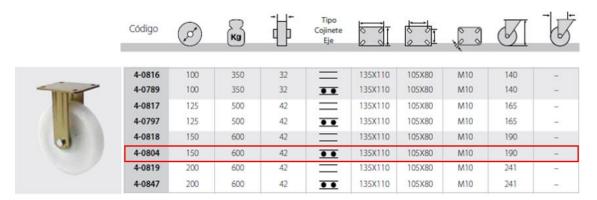

$$3. C_y = 718.34 N$$

Remplazando la ecuación 3 en 1 se obtiene:

$$B_Y = 718.34 \, N/m * 2m - 718.34 \, N$$
 $B_Y = 718.34 \, N$

Esta fuerza de las reacciones encontradas en las ruedas de soporte, se divide en dos debido a que hay dos ruedas para cada sección del cilindro como se ve a continuación y además se multiplica por el sen 45° para calcular la fuerza real producida respecto a ese ángulo que será la ubicación estipulada, obteniendo el siguiente resultado:

Figura 73. Reacciones en las ruedas de soporte



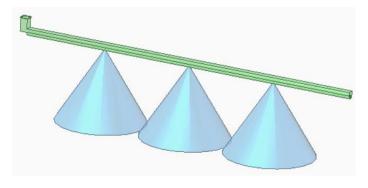
Fuente: Elaboración propia

$$F_{real} = \frac{F}{2} * \sin 45^{\circ}$$

$$F_{real} = \frac{718.34 N}{2} * \sin 45^{\circ}$$

$$F_{real} = 254 N$$

La fuerza a la que estará sometida cada rueda de soporte es de 254 N, es decir 26 Kg, con este dato, precedemos a seleccionar la rueda del "catálogo Ruedas Alex"³⁷, Las características más específicas de las ruedas se muestran en el Anexo B.


Figura 74. Especificaciones generales del tipo de rueda de soporte seleccionada

Fuente: Elaboración propia con base en: RUEDASALEX. Catalogo ruedas Alex. [en línea]. 84 p. [Consultado 30, marzo 2020]. Disponible en: https://baselgalizaga.com/img/cms/documentos/catalogo/alex/catalogo_ruedas_alex.pdf

3.1.4 Selección de boquillas de aspersión. Las boquillas de aspersión son las encargadas de difundir el agua sometida a una presión, para lavar los tubérculos de Sagú de una forma más eficiente.

Figura 75. Proyección flauta aspersora con tres boquillas

Fuente: Elaboración propia con base en: Solid Edge ST10

³⁷ RUEDASALEX. Catalogo ruedas Alex. [en línea]. 84 p. [Consultado 30, marzo 2020]. Disponible en: https://baselgalizaga.com/img/cms/documentos/catalogo/alex/catalogo_ruedas_alex.pdf

Para una selección adecuada de las boquillas de aspersión es necesario tener en cuenta los siguientes aspectos:

3.1.4.1 Presión de Lavado. Para la selección de las boquillas de aspersión que se utilizarán para un lavado más profundo de los tubérculos de Sagú y una correcta extracción de impurezas como lo es la tierra luego de su cosecha, se tiene que hacer a una presión adecuada ya que si se hace a una presión muy baja no quedara bien lavado y si se hace a una presión muy elevada puede causarle daños al tubérculo.

La presión utilizada en máquinas lavadoras de tubérculos del mercado con características similares al Sagú es de un rango de 20 psi – 60 psi , no causando alteraciones ni daños al mismo, sin embargo, indagando más profundamente en una investigación experimental elaborada por estudiantes de la Escuela politécnica nacional de Quito - Ecuador, en la cual realizaron un proyecto previo para la obtención del título de Ingeniero mecánico³⁸, en donde analizaban la apariencia de la malanga uno de los tubérculos con características más similares al Sagú, al final de un lavado a diferentes presiones, concluyeron que la "óptima presión de lavado es 40 psi"³⁹, donde no se evidencia daño alguno al tubérculo y se consigue una apariencia limpia, se trabajará con dicha presión para los cálculos pertinentes.

3.1.4.2 Tipo de boquilla de aspersión. Existen distintos tipos de boquillas de aspersión en el mercado, para diferentes usos, la boquilla de aspersión cono lleno solido es la más recomendada para el lavado y enjuague, trabajan a diferentes presiones y con ángulos de aspersión hasta de 90°40, estas boquillas tienen una línea FullJet la cual se ajusta a los requerimientos de lavado, y por lo tanto, se procederá a seleccionarla, sus características técnicas se especifican en el Anexo C.

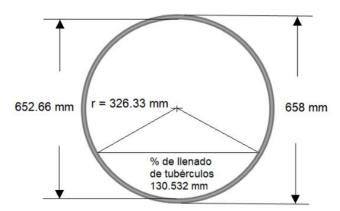
³⁸ TIPÁN, Edwin y ROMÁN, Felipe. Diseño y construcción de una lavadora de malanga de 2000 Kg/h de capacidad. [En linea]. Proyecto previo para la obtención del título de Ingeniero mecánico. Quito, Ecuador. Escuela politécnica nacional. 2011. [Consultado 25, marzo 2020]. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/3958

³⁹lbíd., p. 57.

⁴⁰ SPRAYINGSISTEMS. Sección B - Boquillas de aspersión de cono lleno. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.co/Assets/MX/cat70m-es_b.pdf

Figura 76. Especificaciones generales del tipo de boquilla seleccionada

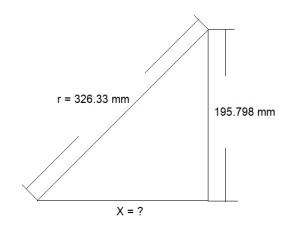
*A la presion indicada en bar.


				Tip	o de	Boqui	lla				Diam.	Diam.					Capa	ridad						gulo	
Conexión Entrada (pulg.)	1	ipo Es	stáno	lar		Monta en Par		Án	gulo	Tamaño	Nominal Orificio	Máximo Paso Libre					os por		to)*				As	persi (°)*	ón
11-3-7	G	GG	Н	нн	GD	HD	GGD	GA	GGA		(mm)	(mm)	0.4	0.5	0.7	1.5	2	3	4	6	7	10	0.5	1.5	6
	•	•		•	•		•			1	.79	.64	.29	.33	.38	.54	.62	.74	.85	1.0	1.1	1.3	-	58	53
	•	•		•						1.5	1.2	.64	.44	.49	.57	.81	.93	1.1	1.3	1.5	1.6	1.9	52	65	59
	•	•		•	•		•	•	•	2	1.2	1.0	.59	.65	.76	1.1	1.2	1.5	1.7	2.0	2.2	2.6	43	50	46
1/8	•	•		•	•		•	•	•	3	1.5	1.0	.88	.98	1.1	1.6	1.9	2.2	2.5	3.1	3.3	3.9	52	65	59
1/0	•	•		•	•		•	•	•	3.5	1.6	1.3	1.0	1.1	1.3	1.9	2.2	2.6	3.0	3.6	3.8	4.5	43	50	46

Fuente: Elaboración propia con base en: SPRAYINGSISTEMS. Sección B - Boquillas de aspersión de cono lleno. [en línea]. B5 p. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.co/Assets/MX/cat70m-es-b.pdf

Se selecciona una boquilla FullJet tipo estándar G con un ángulo de aspersión de 65° para una presión de 3 bares que es equivalente a 40 psi, y un caudal de 2.2 L/min.

3.1.4.3 Cobertura de aspersión. Para saber la cobertura de aspersión de la boquilla, la cual es la zona en la que se debe producir el riego, se realizará el siguiente procedimiento:


Figura 77. Cobertura de aspersión en el Cilindro de lavado

Fuente: Elaboración propia

Se hace un acercamiento a la zona del cálculo, la cual tiene forma de triángulo rectángulo:

Figura 78. Acercamiento zona de cálculo

Fuente: Elaboración propia

Procedemos a calcular la X, con la ecuación de Pitágoras que es la siguiente:

Ecuación 23. Teorema de Pitágoras

$$r^2 = x^2 + a^2$$

Fuente: UNIVERSOFORMULAS. Teorema de Pitágoras. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/teorema-pitagoras/

Despejando la incógnita deseada, se obtiene:

$$x^2 = r^2 - a^2$$

$$x = \sqrt{r^2 - a^2}$$

Remplazando los valores se obtiene:

$$x = \sqrt{(326.33 \ mm)^2 - (195.799 \ mm)^2}$$

$$x = 261.06325 mm$$

Ahora se suma dos veces la X obtenida, ya que son dos triángulos rectángulos unidos, dando como resultado, la distancia de la cobertura de aspersión.

Ecuación 24. Cobertura de aspersión en el Cilindro de lavado

Cobertura de aspersión =
$$x + x$$

Fuente: Elaboración propia

Cobertura de aspersión =
$$261.06325 \text{ mm} + 261.06325 \text{ mm}$$

Cobertura de aspersión
$$= 522.1265 mm$$

3.1.4.4 Altura de aspersión. Se procede a calcular la altura de aspersión teniendo, el diámetro interior del cilindro, la distancia del diámetro interior a la boquilla y la altura del % de llenado de tubérculos de Sagú.

Ecuación 25. Altura de aspersión en el Cilindro de lavado

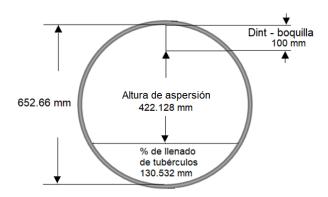
$$Altura\ de\ aspersi\'on = Dint - Dis_{Dint-boquilla} - Dis_{\%tub\'erculos}$$

Fuente: Elaboración propia

Donde:

Dint, Diámetro interior del cilindro mm

 $Dis_{Dint-boquilla}$, Distancia del diámetro interior del cilindro a la boquilla mm $Dis_{\%tub\'erculos}$, Distancia o altura del % de llenado de los tubérculos de Sagú mm


Remplazando los valores se obtiene:

$$Altura\ de\ aspersi\'on = 652.66\ mm - 100\ mm - 130.532\ mm$$

$$Altura de aspersión = 422.128 mm$$

Las distancias se ubican en la siguiente imagen:

Figura 79. Altura de aspersión en el Cilindro de lavado

Fuente: Elaboración propia

3.1.4.5 Ángulo de aspersión. Según Spraying Systems, el ángulo de aspersión se establece teniendo la altura de aspersión y la distancia de aspersión, empleando las herramientas "SprayWare, calculadora de cobertura de aspersión" se establece la altura de aspersión antes calculada de 42.2128 cm y la cobertura de aspersión de 52.213 cm, obteniendo el valor de 63.5° para el ángulo de aspersión.


⁴¹ SPRAYINGSISTEMS. Herramienta SprayWare, Calculadora de cobertura de aspersión. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.mx/sprayware/Spray coverage calculator.aspx

Figura 80. Herramienta SprayWare Calculadora de cobertura de aspersión

Calculadora de Cobertura de Aspersión

Los ángulos de aspersión calculados indican coberturas de aspersión aproximadas basadas en agua. En la aspersión real, el ángulo de aspersión efectivo varía con la distancia de aspersión. Si la cobertura de aspersión es un aspecto crítico en su aplicación, contáctenos para obtener datos específicos de cobertura de aspersión.

Nota: Los líquidos más viscosos que el agua forman ángulos de aspersión más pequeños, dependiendo de la viscosidad, la capacidad de la boquilla y la presión de aspersión. Los líquidos con tensiones superficiales más bajas que la del agua, producen ángulos de aspersión más amplios que los indicados para el agua.

cm

cm

Ingrese la altura de aspersión: 42.2128

Ingrese la cobertura de aspersión: 52.213

El ángulo de aspersión requerido es 63.5 degrees

Resetear Calcular

Fuente: Elaboración propia con base en: SPRAYINGSISTEMS. Herramienta SprayWare, Calculadora de cobertura de aspersión. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.mx/sprayware/Spray coverage calculator.aspx

3.1.4.6 Número de aspersores. Para determinar el número de boquillas de aspersión se toma como base el valor de cobertura de aspersión anteriormente calculado y se procede a verificar el número de boquillas que cubran la longitud del tambor de lavado:

El número de boquillas de aspersión según la longitud establecida para la aspersión del cilindro de lavado será:

Ecuación 26. Número de boquillas de aspersión

$$N = \frac{L_a}{C_a}$$

Fuente: Elaboración propia

Donde:

N, Numero de boquillas

 C_a , Cobertura de aspersión m

 L_a , Longitud establecida para la aspersión en el cilindro m

Se establece una longitud de aspersión de 1.5 m debido a que la longitud total del cilindro son 2 m, dejando un espacio de tolerancia entre el inicio del cilindro y el final.

Remplazando los valores en la ecuación se obtiene:

$$N = \frac{1,5 m}{0.5221265 m}$$

$$N = 2.87$$

Es decir, se seleccionarán un total de 3 boquillas de aspersión para el cilindro.

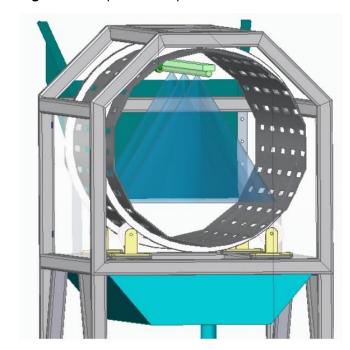


Figura 81. Boquillas de aspersión del cilindro de lavado

Fuente: Elaboración propia

3.1.5 Selección de tuberías. En la selección de tuberías se tendrá en cuenta que el fluido a transportar es agua, la cual tendrá el caudal necesario para la presión de lavado de las boquillas de aspersión.

El caudal en tubería es uno de los parámetros de diseño indicados en el <u>Cuadro 4</u>, donde se estipulo el consumo máximo de agua en un rango de 2 - 4 L/Kg para una

capacidad de 550 Kg/h, este caudal está relacionado netamente con la boquilla de aspersión seleccionada anteriormente, para que se cumpla la presión de lavado estipulada de los tubérculos de Sagú, se tiene que trabajar con el caudal de la boquilla según el catalogo, por lo tanto, el caudal es el siguiente:

$$Q = 2.2 \frac{L}{min} * \frac{1 \, min}{60 \, segundos} * \frac{1 \, m^3}{1000 \, L}$$

$$Q = 3.6 \, x \, 10^{-5} \, \frac{m^3}{s}$$

Como se trabajará con 3 boquillas se procede a calcular el caudal total.

$$Q = 3.6 \, x \, 10^{-5} \, \frac{m^3}{s} * 3$$

$$Q = 1.1 \, x \, 10^{-4} \, \frac{m^3}{s}$$

El cual cumple con el rango estipulado en los parámetros de consumo de agua.

La "rapidez de flujo de volumen" 42 o caudal, se determina por la siguiente ecuación:

Ecuación 27. Rapidez de flujo de volumen o caudal

$$Q = A * v$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p.

ISBN: 9688805424

Donde:

Q, Rapidez de flujo de volumen o caudal $\frac{m^3}{s}$

A, Área de la sección m^2

v, Velocidad de fluido m/s

⁴² MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 146 p. ISBN: 9688805424

Como se está seleccionando tuberías, el área de la sección es el área de un circulo, que está dada por la siguiente ecuación:

$$A = \frac{\pi * D^2}{4}$$

Según MONGE⁴³, La velocidad del agua recomendada en la tubería de aspiración o succión es de máximo 1.5 m/s y en la tubería de impulsión o descarga es de máximo 2.5 m/s.

Para los cálculos pertinentes se usará una velocidad de succión de 1 m/s y una velocidad de descarga de 2.5 m/s.

Despejando de la ecuación de caudal el diámetro de la sección, se obtiene lo siguiente:

$$Q = A * v$$

$$Q = \frac{\pi * D^2}{4} * v$$

$$D = \sqrt{\frac{Q * 4}{v * \pi}}$$

Se procede a calcular el diámetro requerido en la sección de succión y descarga:

$$D_{succión} = \sqrt{\frac{1.1 \times 10^{-4} \frac{m^3}{s} * 4}{1 \frac{m}{s} * \pi}}$$

$$D_{succión} = 0.012 m$$

133

⁴³ MONGE, Miguel A. IAGUA, Algunas observaciones a las instalaciones con equipos de bombeo. [en línea]. España. 2018. [Consultado 30, marzo 2020]. Disponible en: https://www.iagua.es/blogs/miguel-angel-monge-redondo/algunas-observaciones-instalaciones-equipos-bombeo

$$D_{descarga} = \sqrt{\frac{1.1 \times 10^{-4} \frac{m^3}{s} * 4}{2.5 \frac{m}{s} * \pi}}$$

$$D_{descarga} = 0.007 m$$

A continuación, se selecciona la tubería de succión y descarga, con diámetros comerciales según el siguiente catalogo:

Figura 82. Tubería seleccionada Catálogo PAVCO

Fuente: Elaboración propia con base en: PAVCO. Manual técnico tubosistemas PRESIÓN PVC. [en línea]. 7 p. [Consultado 30, marzo 2020]. Disponible en: https://www.nalelectricos.com.co/archivos//PAVCO-presion-PVC.pdf

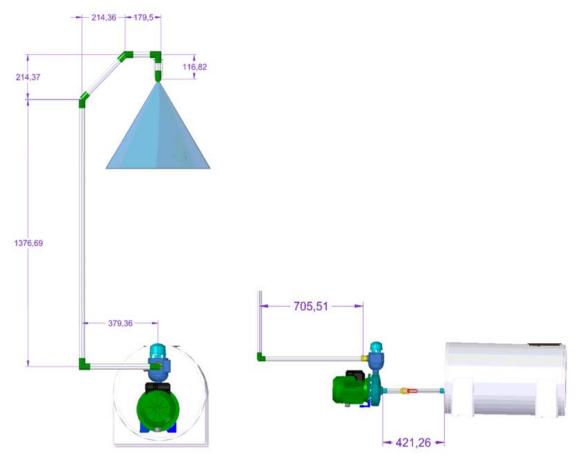
Se seleccionó para la tubería de succión y para la tubería de descarga, un tubo PVC de diámetro comercial de ½ pulgada.

A continuación, se procede a re calcular las velocidades para las zonas de succión y descarga con la tubería seleccionada.

$$v = \frac{Q*4}{\pi*D^2}$$

Remplazando los valores se obtiene:

$$v_{succión} = \frac{1.1 \times 10^{-4} \cdot \frac{m^3}{s} * 4}{\pi * 0.021^2 m}$$


$$v_{succión} = 0.32 \cdot \frac{m}{s}$$

$$v_{descarga} = \frac{1.1 \times 10^{-4} \cdot \frac{m^3}{s} * 4}{\pi * 0.021^2 \, m}$$

$$v_{descarga} = 0.32 \cdot \frac{m}{s}$$

3.1.6 Selección de la Bomba. Para unos adecuados cálculos tras seleccionar las tuberías del sistema, se procede a establecer el siguiente dimensionamiento empleando el Software Solid Edge ST10, el cual muestra las medidas y ubicación de accesorios.

Figura 83. Dimensiones y ubicación de tuberías y accesorios del Sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

Las medidas se encuentran en milímetros, ahora se procede a seleccionar la bomba empleando el siguiente procedimiento y utilizando la ecuación general de la energía:

Ecuación 28. Ecuación general de la energía

$$Z_1 + \frac{V_1^2}{2 * g} + \frac{P_1}{\gamma} + h_A - h_R - h_L = Z_2 + \frac{V_2^2}{2 * g} + \frac{P_2}{\gamma}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p.

ISBN: 9688805424

Donde:

 Z_1 , Altura en el punto 1 m

 V_1 , Velocidad en el punto 1 m/s

g, Gravedad m/s^2

 P_1 , Presión en el punto 1 N/m^2

 γ , Peso específico del fluido N/m^3

 Z_2 , Altura en el punto 2 m

 V_2 , Velocidad en el punto 2 m/s

 P_2 , Presión en el punto $2N/m^2$

 h_A , Adición de energía en el sistema

 h_R , Sustracción de energía en el sistema

 h_L , Perdida de energía por fricción en el sistema

Se procede a reducir la ecuación, realizando suposiciones y determinando los valores cero de esta.

 $P_1 = 0$, El tanque se encuentra expuesto a la atmosfera.

 $P_2 = 0$, La salida del fluido está expuesto a la atmosfera.

 ${\it V}_1=0$, Se supone como 0 ya que el tanque tiene un área grande y la velocidad seria mínima.

 $h_{\it R}=0$, En el sistema no hay dispositivos mecánicos que sustraigan la energía.

 $Z_1=0$, Se toma como referencia el punto 1 el suelo por lo tanto se asume como 0.

$$Z_{1} + \frac{V_{1}^{2}}{2 + g} + \frac{P_{1}}{\gamma} + h_{A} - h_{R} - h_{L} = Z_{2} + \frac{V_{2}^{2}}{2 * g} + \frac{P_{2}^{2}}{\gamma}$$

Reduciendo la ecuación se obtiene:

$$h_A - h_L = Z_2 + \frac{V_2^2}{2 * g}$$

El elemento que adiciona energía al sistema es una bomba, por lo tanto para realizar la selección de esta, se procede a despejar h_A .

$$h_A = Z_2 + \frac{V_2^2}{2 * g} + h_L$$

Las pérdidas de energía h_L , están compuestas por las pérdidas primarias en la tubería y las pérdidas secundarias en los accesorios de la tubería.

3.1.6.1 Perdidas primarias. Se procede a determinar las perdidas primarias, utilizando la ecuación de Darcy:

Ecuación 29. Darcy - Weisbach

$$h_L = f * \frac{L}{D} * \frac{V^2}{2 * g}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 235 p.

ISBN: 9688805424

Donde:

 h_L , Perdida de energía por fricción en el sistema m

f, Factor de fricción Adimensional

 $\it L$, Longitud $\it m$

D, Diámetro de la tubería m

V, Velocidad del fluido m/s

g, Gravedad m/s^2

Para calcular el factor de fricción de la ecuación, se procede a determinar si el flujo es laminar o turbulento a través del número de Reynolds, con las siguientes ecuaciones:

Flujo laminar:

Ecuación 30. Flujo laminar

$$f_{Laminar} = \frac{64}{N_R}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 238 p. ISBN: 9688805424

Donde:

 N_R , Numero de Reynolds *Adimensional*

Flujo turbulento:

Ecuación 31. Flujo turbulento

$$f_{Turbulento} = \frac{0.25}{\left[\log\left(\frac{1}{3.7 * \frac{D}{\varepsilon}} + \frac{5.74}{N_R^{0.9}}\right)\right]^2}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 248 p. ISBN: 9688805424

Donde:

D, Diámetro de la tubería m

 ε , Coeficiente de rugosidad del material de la tubería mm

 N_R , Numero de Reynolds *Adimensional*

Numero de Reynolds:

Ecuación 32. Número de Reynolds

$$N_R = \frac{V * D * \rho}{\mu}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 238 p.

ISBN: 9688805424

Donde:

- V, Velocidad del fluido m/s
- D, Diametro de la tubería m
- ρ , Densidad del fluido Kg/m^3
- $\mu,$ Viscosidad dinámica del fluido $\frac{N}{m^2}*s$

$$N_R < 2000 \ Laminar$$

 $N_R > 3000 \ Turbulento$

Teniendo en cuenta que el fluido que se transporta por la tubería es agua, se procede a realizar los cálculos, con las siguientes propiedades a 20°C asumiendo una temperatura ambiente:

Tabla 3. Propiedades del Agua

Temperatura (°C)	Peso específico γ (kN/m³)	Densidad p (kg/m¹)	Viscosidad dinámica μ (Pa · s) σ (N · s/m²)	Viscosidad cinemática V (m²/s)
0	9.81	1000	1.75 × 10 ⁻³	1.75 × 10 ⁻⁶
5	9.81	1000	1.52×10^{-3}	1.52×10^{-6}
10	9.81	1000	1.30×10^{-3}	1.30×10^{-6}
15	9.81	1000	1.15×10^{-3}	1.15×10^{-6}
20	9.79	998	1.02×10^{-3}	1.02 × 10-6
25	9.78	997	8.91 × 10 ⁻¹	8.94×10^{-7}

Fuente: Elaboración propia con base en: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 535 p. ISBN: 9688805424

Densidad de 998 Kg/m^3 Viscosidad dinámica $1.02 \times 10^{-3} \frac{Kg}{m*s}$

Se realizan los cálculos pertinentes de las pérdidas primarias en cada zona de la tubería.

3.1.6.1.1 Zona de succión de la tubería. Procedemos a remplazar los valores en la <u>Ecuación 32</u> del número de Reynolds:

$$N_R = \frac{0.32 \frac{m}{s} * 0.021 m * 998 Kg/m^3}{1.02 \times 10^{-3} \frac{Kg}{m * s}}$$

$$N_R = 6575.1$$

Como se tiene $N_R > 3000$, se determina que es un flujo turbulento, por lo tanto se remplaza en la <u>Ecuación 31</u>, de factor de fricción para este tipo de flujo y se obtiene:

Figura 84. Valores de coeficientes de rugosidad

	Coeficiente	Coef. Hazen-	Coef. Rugosidad
Material	de Manning	Williams	Absoluta
	n	C _H	e (mm)
Asbesto cemento	0.011	140	0.0015
Latón	0.011	135	0.0015
Tabique	0.015	100	0.6
Fierro fundido (nuevo)	0.012	130	0.26
Concreto (cimbra metálica)	0.011	140	0.18
Concreto (cimbra madera)	0.015	120	0.6
Concreto simple	0.013	135	0.36
Cobre	0.011	135	0.0015
Acero corrugado	0.022		45
Acero galvanizado	0.016	120	0.15
Acero (esmaltado)	0.010	148	0.0048
Acero (nuevo, sin recubrim.)	0.011	145	0.045
Acero (remachado)	0.019	110	0.9
Plomo	0.011	135	0.0015
Plástico (PVC)	0.009	150	0.0015
Madera (duelas)	0.012	120	0.18
Vidrio (laboratorio)	0.011	140	0.0015

Fuente: Elaboración propia con base en: METHODS, Haestad, *et al.* Computer Applications in Hydraulic Engineering. U.S.A. 2002. Fifth edition. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://es.slideshare.net/cosmeacr/coeficientes-de-rugosidad-haestad. ISBN 10: 0971414149.

Este valor de rugosidad en el material PVC se utiliza para la tubería de succión y descarga.

$$f_{Turbulento} = \frac{0.25}{\left[\log\left(\frac{1}{3.7 * \frac{0.021 \, m}{1.5 \, x \, 10^{-6} \, m}} + \frac{5.74}{6575.1^{0.9}}\right)\right]^2}$$

$$f_{Turbulento} = 0.035$$

Calculado el factor de fricción se procede a remplazar los valores en la <u>Ecuación 29</u> de Darcy:

$$h_{L_{primarias}} = 0.035 * \frac{0.4216 \, m}{0.021 \, m} * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

Las pérdidas primarias en la zona de succión son:

$$h_{L_{primarias}} = 0.004 \, m$$

3.1.6.1.2 Zona de descarga de la tubería. En esta sección de la tubería como se evidencia por los cálculos realizados anteriormente, en donde la tubería seleccionada para la zona de succión tanto para la de descarga es la misma, siendo la velocidad real del fluido igual es ambas secciones, por lo tanto, el número de Reynolds y el factor de fricción serán iguales que los de la zona de succión.

Se procede a calcular las perdidas primerias en la zona de descarga:

$$h_{L_{primarias}} = 0.035 * \frac{3.077 \, m}{0.021} * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{primarias}} = 0.03 \, m$$

3.1.6.2 Perdidas secundarias. A continuación, se calculan las pérdidas secundarias o perdidas menores de los accesorios de la tubería, en el sistema se ubican 1 entrada, 1 válvula tipo bola, 1 filtro de succión, 4 codos de 90°, 2 codos de 45° y 3 boquillas de aspersión, estas pérdidas se expresan con la siguiente ecuación:

Ecuación 33. Perdidas Menores por accesorios

$$h_{L_{Secundarias}} = K * \frac{V^2}{2 * g}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 268 p.

ISBN: 9688805424

Donde:

K, Coeficiente de resistencia

V, Velocidad del fluido m/s

g, Gravedad m/s^2

Donde el valor para el coeficiente de resistencia K, es diferente según el accesorio que se encuentre, sin embargo, se puede determinar con la siguiente ecuación:

Ecuación 34. Coeficiente de Resistencia

$$K = f_T * \frac{Le}{D}$$

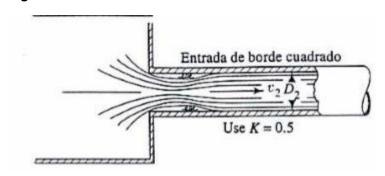
Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 268 p.

ISBN: 9688805424

Donde:

 f_T , Factor de fricción *Adimensional*

Le, Longitud equivalente *m*


D, Diámetro de la tubería m

Se realizan los cálculos pertinentes de las pérdidas secundarias en cada zona de la tubería:

3.1.6.2.1 Zona de succión de la tubería. En esta zona se encuentra la entrada del tanque a la tubería, una válvula de tipo bola y un filtro de succión, las cuales se asumen como perdidas secundarias, donde el valor para el coeficiente de resistencia K, para estos accesorios es el siguiente:

Entrada del tanque a la tubería:

Figura 85. Coeficientes de resistencia en la entrada

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 280 p. ISBN: 9688805424

La entrada del tanque a la tubería, se tiene un coeficiente de resistencia de K= 0.5 y remplazando los valores en la <u>Ecuación 33</u>, se obtiene:

$$h_{L_{Secundarias}} = 0.5 * \frac{0.32^2 \, m/s}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0026 \, m$$

Válvula tipo bola:

Para determinar el coeficiente de resistencia de una válvula de tipo bola, se emplea las siguientes tablas.

Tabla 4. Resistencias de accesorios expresada en Le/D

Tipo	Longitud equivalente en diámetros de conducto, L/D
Válvula de globo—completamente abierta	340
Válvula de ángulo—completamente abierta	150
Válvula de compuerta—completamente abierta	8
—3/4 abierta	35
—1/2 abierta	160
—1/4 abierta	900
Válvula de verificación—tipo giratorio	100
Válvula de verificación—tipo de bola	150
Válvula de mariposa—completamente abierta	45
Codo estándar de 90°	30
Codo de radio de largo de 90°	20
Codo de calle de 90°	50
Codo estándar de 45°	16
Codo de calle de 45°	26
Codo de devolución cerrada	50
Te estándar—con flujo a través de un tramo	20
Te estándar—con flujo a través de una rama	60

Fuente: Elaboración propia con base en: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 283 p.

ISBN: 9688805424

La zona de succión tiene un diámetro nominal de ½ pulgada por lo tanto el factor de fricción en la zona turbulenta es el siguiente:

Tabla 5. Factor de fricción en zona turbulenta de tuberías comerciales

Tamaño de conducto nominal (pulg)	Factor de fricción, $f_{_T}$	Tamaño de conducto nominal (pulg)	Factor de fricción, f_{τ}		
<i>Y</i> ₂	0.027	4	0.017		
3/4	0.025	5	0.016		
1	0.023	6	0.015		
11/4	0.022	8-10	0.014		
1 1/2	0.021	12-16	0.013		
2	0.019	18-24	0.012		
21/2,3	0.018				

Fuente: Elaboración propia con base en: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 284 p. ISBN: 9688805424

El coeficiente de resistencia K, empleando la <u>Ecuación 34</u>, para la válvula tipo bola es:

$$K = 0.027 * 150$$
 $K = 4.05$

Remplazando los valores en la <u>Ecuación 33</u>, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 4.05 * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.020 \, m$$

Filtro de succión:

Este filtro tiene como objetivo impedir la entrada de impurezas a la bomba, para determinar el coeficiente de resistencia de un filtro de succión, se emplea la siguiente figura.

Figura 86. Perdidas en accesorios

Válvula esférica, totalmente abierta	K = 10
Válvula de ángulo, totalmente abierta	K = 5
Válvula de retención de clapeta	K = 2.5
Válvula de pié con colador	K = 0.8
Válvula de compuerta, totalmente abierta	K = 0.19
Codo de retroceso	K = 2,2
Empalme en T normal	K = 1.8
Codo de 90° normal	K = 0.9
Codo de 90° de radio medio	K = 0.75
Codo de 90° de radio grande	K = 0.60
Codo de 45º	K = 0.42

Fuente: Balance de energía con pérdidas de fricción. [en línea]. 2016. [Consultado 30, marzo 2020]. Disponible en: https://www.slideshare.net/alexgenez/balance-de-energa-con-prdidas-de-friccin

Remplazando los valores en la <u>Ecuación 33</u>, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 0.8 * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0042 \, m$$

Las pérdidas de energía en la zona de succión totales son:

$$h_{L_{Secundarias}} = 0.0026 \ m + 0.020 \ m + 0.0042 \ m$$
 $h_{L_{Secundarias}} = 0.03 \ m$

3.1.6.2.2 Zona de descarga de la tubería. En esta zona hay 4 codos de 90°, 2 codos de 45° y en la salida 3 boquillas, los cuales se asumen como perdidas secundarias, donde el valor para el coeficiente de resistencia K, para estos accesorios son los siguientes:

Codo estándar 90°:

Remitiéndose a la <u>Tabla 4</u>, se determina el valor de $\frac{Le}{D}$, para un codo de 90° estándar que es de 30.

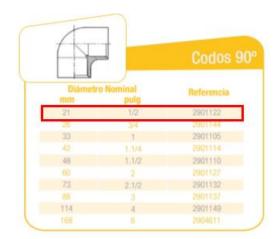
La zona de descarga tiene un diámetro nominal de ½ pulgada por lo tanto el factor de fricción en la zona turbulenta es el mismo que en la zona de succión 0.027.

El coeficiente de resistencia K, empleando la <u>Ecuación 34</u>, para un codo estándar de 90° es:

$$K = 0.027 * 30$$
 $K = 0.81$

Remplazando los valores en la <u>Ecuación 33</u>, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 0.81 * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$


$$h_{L_{Secundarias}} = 0.004 \, m$$

En la tubería de descarga se encuentran 4 codos de 90° por lo tanto las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.004 \, m * 4$$
 $h_{L_{Secundarias}} = 0.016 \, m$

Se selecciona del catálogo de PAVCO el siguiente Codo estándar de 90° de ½ pulgada.

Figura 87. Codo estándar de 90°

Fuente: Elaboración propia con base en: PAVCO. Manual técnico tubosistemas PRESIÓN PVC. [en línea]. 8 p. [Consultado 30, marzo 2020]. Disponible en: https://www.nalelectricos.com.co/archivos//PAVCO-presion-PVC.pdf

Codo estándar de 45°:

Remitiéndose a la <u>Tabla 4</u>, se determina que el valor de $\frac{Le}{D}$, para un codo de 45° estándar es de 16.

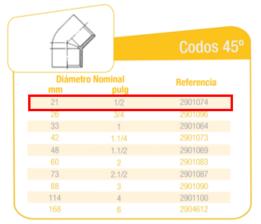
La zona de descarga tiene un diámetro nominal de ½ pulgada por lo tanto el factor de fricción en la zona turbulenta se obtiene remitiéndose a la <u>Tabla 5</u>, el cual es de 0.027.

El coeficiente de resistencia K, empleando la <u>Ecuación 34</u>, para un codo estándar de 45° es:

$$K = 0.027 * 16$$
 $K = 0.432$

Remplazando los valores en la Ecuación 33, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 0.432 * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$


$$h_{L_{Secundarias}} = 0.0023 \, m$$

En la tubería de descarga se encuentran 2 codos de 45° por lo tanto las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.0023 \ m * 2$$
 $h_{L_{Secundarias}} = 0.005 \ m$

Se selecciona del catálogo de PAVCO el siguiente Codo estándar de 45° de ½ pulgada.

Figura 88. Codo estándar de 45°

Fuente: Elaboración propia con base en: PAVCO. Manual técnico tubosistemas PRESIÓN PVC. [en línea]. 8 p. [Consultado 30, marzo 2020]. Disponible en:

https://www.nalelectricos.com.co/archivos//PAVCO-presion-PVC.pdf

Boquillas de Aspersión:

Las boquillas de aspersión del sistema, se encuentran al final de la tubería de descarga, el valor del coeficiente de resistencia en una boquilla se determina con la siguiente figura:

Tabla 6. Valores aproximados para el coeficiente de resistencia K

PIEZA	K
Ampliación gradual	0.30
boquilla	2.75
compuerta abierta	1.00
controlador de caudal	0.90
codo de 90°	0.90
codo de 45°	0.40
rejilla	0.75
curva 90°	0.40
curva 45°	0.20
entrada normal (tubo)	0.50
entrada de borde	1.00
medidor de venturi	2.50
reducción gradual	0.15
valv. de compuerta abierto	0.20
valv. globo abierto	10.00
salida de tubo	1.00
T, pasaje directo	0.60
T, salida de lado	1.30
T, salida bilateral	1.80
valv. de retención (check)	2.50
valv. de pie	1.75

Fuente: AZEVEDO, Netto. Manual de hidráulica, Editora Edgard Blucher LTDA. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.udocz.com/read/21878/manual-de-hidraulica---azevedo-netto. ISBN: 85-212-0277-6.

Remplazando los valores en la Ecuación 33, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 2.75 * \frac{(0.32 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.014 \, m$$

En la salida de la tubería de descarga se encuentran 3 boquillas, por lo tanto, las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.014 \, m * 3$$

$$h_{LSecundarias} = 0.042 \, m$$

Las pérdidas de energía en la zona de descarga totales son:

$$h_{L_{Secundarias}} = 0.016 m + 0.005 m + 0.042 m$$

$$h_{L_{Secundarias}} = 0.06 m$$

Ahora se procede a calcular las pérdidas por energía totales del sistema, empleando la sumatoria de las pérdidas de energía tanto primarias como secundarias de ambas zonas de la tubería.

$$h_L = h_{Lprimariassucci\'on} + h_{Lprimariasdescarga} + h_{LSecundariassucci\'on} + h_{LSecundariasdescarga}$$

Remplazando los valores obtenidos anteriormente se obtiene:

$$h_L = 0.004 m + 0.03 m + 0.03 m + 0.06 m$$

$$h_L=0.12~m$$

A continuación, se procede a calcular el elemento que adiciona energía al sistema el cual es una bomba, remplazando en la ecuación general de la energía, simplificada anteriormente, se obtiene:

$$h_A = Z_2 + \frac{V_2^2}{2 * g} + h_L$$

$$h_A = 1.5 m + \frac{(0.32 m/s)^2}{2 * 9.8 \frac{m}{s^2}} + 0.12 m$$

$$h_A = 1.6 m$$

3.1.6.3 Cálculo del NPSH. Determinando el NPSH, se determina la posibilidad de cavitación en la línea de succión, la cual se calcula a través de la siguiente ecuación:

Ecuación 35. NPSH de la Bomba

$$NPSH = \frac{P_{atm}}{\gamma} \pm h_s - h_f - \frac{P_{vp}}{\gamma}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p. ISBN: 9688805424

Donde:

P_{atm}, Presión atmosférica *Pa*

 γ , Peso específico del fluido N/m^3

 h_s , Diferencia de altura desde el nivel del fluido a la línea de la bomba, (+) si la bomba está por debajo del nivel del depósito, (-) si la bomba está por encima del nivel del depósito m

 h_f , Pérdidas totales en la línea de succión m

 P_{vp} , Presión de vapor del fluido a la temperatura del deposito Pa

Se toma como referencia la presión atmosférica en Bogotá ya que es uno de los lugares más cercanos al municipio de Cundinamarca, se registra con un valor de 560 mmHg⁴⁴, lo que es equivalente a 74660 Pa.

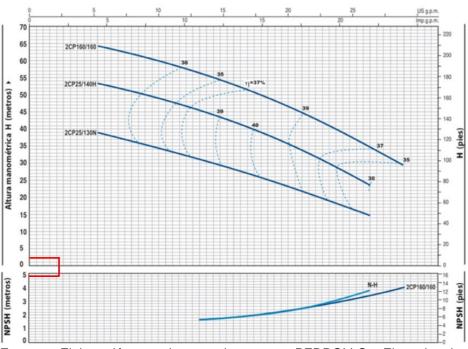
El peso específico del fluido se obtiene de la <u>Tabla 3</u>, Donde se tiene un valor de 9.79 KN/m3.

La diferencia de altura se observa a partir de la <u>Figura 83</u>, la cual es de 1.5 m es negativa ya que la bomba se encuentra al mismo nivel del depósito.

⁴⁴ PUERTO, Efrain. Presión atmosférica. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://efrainpuerto.wordpress.com/2011/02/26/f1-2/

Las pérdidas totales en la zona de succión se calcularon anteriormente, teniendo el siguiente valor:

$$h_L = 0.004 \, m + 0.03 \, m$$


$$h_L = h_f = 0.034 \, m$$

"La presión de vapor del fluido a la temperatura de trabajo 20°C, es de 17.5 Torr" lo que es equivalente a 2333 Pa.

Remplazando los valores en la Ecuación 35, se obtiene:

$$NPSH = \frac{74660 \, Pa}{9790 \, N/m^3} - 1.5 \, m - 0.034 \, m - \frac{2333 \, Pa}{9790 \, N/m^3}$$
$$NPSH = 5 \, m = 16 \, ft$$

Figura 89. Curva característica de Bomba agrícola

Fuente: Elaboración propia con base en: PEDROLLO. Electrobombas Centrifugas. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.slideshare.net/LEVRental/pedrollo-modelo-2cp

⁴⁵ SIENKO, M. J.; Plane, R. A. Química. Editorial Aguilar, Barcelona, 1967. [en línea]. [Consultado 30, marzo 2020]. Disponible en: http://docencia.udea.edu.co/cen/tecnicaslabquimico/03anexos/anexo05.htm

Se selecciona una "bomba modelo 2CP25/130N"⁴⁶, la cual satisface las necesidades, y según el catalogo es adecuada para aplicaciones de agricultura y aspersión de agua, las características y dimensiones de la bomba se encuentran en el Anexo D.

El NPSH calculado está por encima de la curva del NPSH del fabricante, indicando que no presentará cavitación en la zona de succión, por lo tanto, el diseño es adecuado.

De acuerdo a las dimensiones de la bomba seleccionada, la succión tiene un diámetro de 1 ¼ in y la descarga tiene un diámetro de 1 in, y las tuberías seleccionadas para dichas zonas tienen un diámetro de ½ in respectivamente, por lo tanto, se tendrá que re calcular el procedimiento anterior y para unirlas se emplearán uniones universales, las cuales facilitarán el mantenimiento de accesorios y bomba y a su vez cumplirán la función de unir los componentes.

Se empezará seleccionando nuevamente diámetros normalizados para estas tuberías.

Figura 90. Diámetros normalizados Catalogo PAVCO

Tuberías Presión PAVCO										
Diámetro Nominal		Referencia	Peso	Diám Exterior P		Esp de Pare	Diámetro Interior Promedio			
mm	pulg.		g/m	mm	pulg.	mm	pulg.	mm		
26	3/4	2900237	189	26.7	1.05	1.52	0.06	23.63		
33	1	2900220	252	33.4	1.31	1.60	0.06	30.20		
42	1.1/4	2900225	395	42.2	1.66	2.01	0.08	38.14		
48	1.1/2	2902450	514	48.3	1.90	2.29	0.09	43.68		

Fuente: Elaboración propia con base en: PAVCO. Manual técnico tubosistemas PRESIÓN PVC. [en línea]. 7 p. [Consultado 30, marzo 2020]. Disponible en: https://www.nalelectricos.com.co/archivos//PAVCO-presion-PVC.pdf

Posteriormente se re calcularan las velocidades en dichas zonas debido a que cambian los diámetros de las tuberías, empleando el despeje de la velocidad de la <u>Ecuación 27</u>, se obtienen las siguientes velocidades para la zona de succión y descarga:

⁴⁶ PEDROLLO. Electrobombas Centrifugas. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.slideshare.net/LEVRental/pedrollo-modelo-2cp

$$v_{succión} = \frac{1.1 \times 10^{-4} \frac{m^3}{s} * 4}{\pi * 0.042^2 m}$$

$$v_{succión} = 0.08 \frac{m}{s}$$

$$v_{descarga} = \frac{1.1 \times 10^{-4} \frac{m^3}{s} * 4}{\pi * 0.033^2 m}$$

$$v_{descarga} = 0.13 \frac{m}{s}$$

Se re calculan las perdidas, con el procedimiento anterior empezando con las perdidas primarias, <u>Ecuación 29</u> de Darcy.

Zona de succión de la tubería:

Se calcula el Número de Reynolds con la Ecuación 32, y se obtiene:

$$N_R = \frac{0.08 \frac{m}{s} * 0.042 m * 998 Kg/m^3}{1.02 \times 10^{-3} \frac{Kg}{m * s}}$$

$$N_R = 3287.5$$

Como se tiene $N_R > 3000$, se determina que es un flujo turbulento, por lo tanto se remplaza en la <u>Ecuación 31</u>.

$$f_{Turbulento} = \frac{0.25}{\left[\log\left(\frac{1}{3.7 * \frac{0.042 \, m}{1.5 \, x \, 10^{-6} \, m}} + \frac{5.74}{3287.5^{0.9}}\right)\right]^2}$$

$$f_{Turbulento} = 0.043$$

Se procede a remplazar los valores en la Ecuación 29 de Darcy:

$$h_{L_{primarias}} = 0.043 * \frac{0.4216 \, m}{0.042 \, m} * \frac{(0.08 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

Las pérdidas primarias en la zona de succión son:

$$h_{L_{primarias}} = 0.00014 m$$

Zona de descarga de la tubería:

Se emplean las mismas ecuaciones anteriores para la zona de descarga obteniendo:

Remplazando en la <u>Ecuación 32</u>, se obtiene:

$$N_R = \frac{0.13 \frac{m}{s} * 0.033 m * 998 Kg/m^3}{1.02 \times 10^{-3} \frac{Kg}{m * s}}$$

$$N_R = 4197.5$$

Como se tiene $N_R > 3000$, se determina que es un flujo turbulento, por lo tanto se remplaza en la <u>Ecuación 31.</u>

$$f_{Turbulento} = \frac{0.25}{\left[\log\left(\frac{1}{3.7 * \frac{0.033 \, m}{1.5 \, x \, 10^{-6} \, m}} + \frac{5.74}{4197.5^{0.9}}\right)\right]^2}$$

$$f_{Turbulento} = 0.04$$

Se procede a remplazar los valores en la Ecuación 29 de Darcy:

$$h_{L_{primarias}} = 0.04 * \frac{3.077 \ m}{0.033 \ m} * \frac{(0.13 \ m/s)^2}{2 * 9.8 \ \frac{m}{s^2}}$$

Las pérdidas primarias en la zona de succión son:

$$h_{L_{primarias}} = 0.003 \, m$$

Ahora se re calculan las perdidas secundarias por los accesorios, empleando la Ecuación 33.

Zona de succión de la tubería:

Entrada del tanque a la tubería:

Empleando la <u>Figura 85</u>, se obtiene el Coeficiente de resistencia K = 0.5, luego se remplaza en la <u>Ecuación 33</u>, dando el siguiente resultado:

$$h_{L_{Secundarias}} = 0.5 * \frac{(0.08 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0002 \; m$$

Válvula tipo Bola:

Empleando la <u>Tabla 4</u> y la <u>Tabla 5</u>, donde se sabe que la zona de succión tendrá un diámetro nominal de 1 ¼ in, se calcula su coeficiente de resistencia K correspondiente a partir de la <u>Ecuación 34</u>.

$$K = 0.022 * 150$$

$$K = 3.3$$

Remplazando los valores en la Ecuación 33, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 3.3 * \frac{(0.08 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0011 \, m$$

Filtro de Succión:

Empleando la <u>Figura 86</u>, se determina el coeficiente de resistencia K y se procede a remplazar los valores en la <u>Ecuación 33</u>, de pérdidas secundarias obteniendo:

$$h_{L_{Secundarias}} = 0.8 * \frac{(0.08 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0003 \; m$$

Las pérdidas de energía en la zona de succión totales son:

$$h_{L_{Secundarias}} = 0.0002 \ m + 0.0011 \ m + 0.0003 \ m$$

$$h_{L_{Secundarias}} = 0.002 m$$

Zona de descarga de la tubería:

Codo estándar 90°:

Remitiéndose a la <u>Tabla 4</u> y <u>Tabla 5</u>, donde se sabe que la zona de descarga tendrá un diámetro nominal de 1 in, se calcula su coeficiente de resistencia K correspondiente a partir de la <u>Ecuación 34</u>, para un codo estándar de 90°.

$$K = 0.023 * 30$$

$$K = 0.69$$

Remplazando los valores en la Ecuación 33, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 0.69 * \frac{(0.13 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0006 m$$

Para 4 codos de 90° las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.0006 \, m * 4$$

$$h_{L_{Secundarias}} = 0.0024 \, m$$

Se seleccionan Codos estándar de 90° de 1 pulgada.

Codo estándar de 45°:

Remitiéndose a la <u>Tabla 4</u> y <u>Tabla 5</u>, se determinar el coeficiente de resistencia K, empleando la <u>Ecuación 34</u>, para un codo estándar de 45°

$$K = 0.023 * 16$$
 $K = 0.368$

Remplazando los valores en la <u>Ecuación 33</u>, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 0.368 * \frac{(0.13 \ m/s)^2}{2 * 9.8 \ \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.00032 \ m$$

Para 2 codos de 45° las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.00032 \ m * 2$$

$$h_{L_{Secundarias}} = 0.0006 \ m$$

Se seleccionan Codos estándar de 45° de 1 pulgada.

Boquillas de Aspersión:

Empleando la <u>Tabla 6</u>, se determina el coeficiente de resistencia K, remplazando los valores en la <u>Ecuación 33</u>, de pérdidas secundarias se obtiene:

$$h_{L_{Secundarias}} = 2.75 * \frac{(0.13 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias}} = 0.0024 \; m$$

Para 3 boquillas, las pérdidas secundarias son:

$$h_{L_{Secundarias}} = 0.0024 \, m * 3$$

$$h_{L_{Secundarias}} = 0.0072 \, m$$

Las pérdidas de energía en la zona de descarga totales son:

$$h_{L_{Secundarias}} = 0.0024 \, m + 0.0006 \, m + 0.0072 \, m$$

$$h_{L_{Secundarias}} = 0.01 \, m$$

Por lo tanto, las pérdidas por energía totales del sistema, son:

$$h_L = 0.00014 \, m + 0.003 \, m + 0.002 \, m + 0.01 \, m$$

$$h_L = 0.015 m$$

Adicionalmente se tendrán dos uniones universales en el sistema, las cuales producirán unas perdidas, por lo cual, se procede a re calcular las pérdidas de energía secundarias en la zona de succión y en la zona de descarga.

Las uniones universales, estarán ubicadas al final de la línea de succión uniendo la tubería de succión con la bomba y al inicio de la línea de descarga, uniendo la tubería de descarga con la bomba, el valor del coeficiente de resistencia en una unión se determina con la siguiente figura.

Figura 91. Coeficientes de resistencia K en accesorios

	Diámetro nominal (mm)												
Accesorio	12	18	25	32	38	50	0 62						
		Coeficiente K											
Codo roscado 90º	2,10	1,69	1,44	1,28	1,16	0,99	0,88						
Codo roscado 90º (R.L.)	1,29	0,92	0,73	0,61	0,52	0,41	0,35						
Codo bridado 90º	-		0,43	0,41	0,39	0,38	0,35						
Codo bridado 90º (R.L)	-	-	0,41	0,37	0,34	0,30	0,26						
Codo roscado 45º	0,37	0,35	0,34	0,33	0,32	0,31	0,30						
Codo bridado 45º	-	(4)	0,25	0,24	0,22	0,20	0,19						
Codo roscado 180º	2,10	1,69	1,45	1,29	1,17	1,00	0,89						
Válvula angular bridada	-	1.41	3,84	3,43	3,13	2,71	2,42						
Vălvula de pie con colador	-	-	2,75	2,46	2,25	1,95	1,75						
Acoples o Uniones	0,12	0,09	0,06	0,07	0,08	0,05	0,06						

Fuente: Elaboración propia con base en: PROCURADURÍA GENERAL DE LA REPÚBLICA. Sistemas de agua fría y agua caliente. [en línea]. Costa Rica. [Consultado 31, marzo 2020]. Disponible en:

http://www.pgrweb.go.cr/DOCS/NORMAS/1/VIGENTE/R/2010-2019/2015-2019/2017/14669/1153AA.HTML

Sabiendo el coeficiente de resistencia, se procede a calcular las pérdidas por este accesorio, teniendo en cuenta los nuevos diámetros y velocidades de las zonas de succión y descarga, se emplea la <u>Ecuación 33</u> y remplazando los valores, se obtiene:

$$h_{L_{Secundarias succión}} = 0.06 * \frac{(0.08 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias succi\'on}} = 0.00002 \ m$$

$$h_{L_{Secundarias descarga}} = 0.06 * \frac{(0.13 \, m/s)^2}{2 * 9.8 \, \frac{m}{s^2}}$$

$$h_{L_{Secundarias descarga}} = 0.000052 \ m$$

Se procede a sumar está pérdida a las perdidas secundarias en cada zona calculada anteriormente.

$$h_{L_{Secundarias succión}} = 0.002 \, m + 0.00002 \, m$$

$$h_{L_{Secundariassucción}} = 0.00202 \, m$$
 $h_{L_{Secundariasdescarga}} = 0.01 \, m \, + 0.000052 \, m$ $h_{L_{Secundariasdescarga}} = 0.0101 \, m$

A continuación, se re calculan las pérdidas de energía totales del sistema.

$$h_L = h_{Lprimariassucción} + h_{Lprimariasdescarga} + h_{LSecundariassucción} + h_{LSecundariasdescarga}$$

$$h_L = 0.00014 \ m + 0.003 \ m + 0.00202 \ m + 0.0101 \ m$$

$$h_L = 0.0152 \ m$$

Teniendo las pérdidas del sistema, se procede a calcular la nueva altura de la bomba empleando la <u>Ecuación 28</u>, se obtiene:

$$h_A = 1.5 m + \frac{(0.13 m/s)^2}{2 * 9.8 \frac{m}{s^2}} + 0.0152 m$$

$$h_A = 1.5 m$$

Como se evidencia, re calculando todo el procedimiento, con los nuevos diámetros de tuberías y con los accesorios adicionales en cada zona del sistema, no se afectará significativamente la altura de la bomba, indicando que la selección de la bomba es adecuada para el diseño.

3.1.7 Cálculo y Selección del tanque de suministro de agua. El tanque de suministro es donde se depositará el agua que llega de la llave, este tanque debe tener la capacidad para almacenar el agua con la que se realizará el lavado de los tubérculos de Sagú, por lo tanto, con ayuda del caudal de la tubería suministrado para que el sistema de aspersión trabaje en óptimas condiciones, y del tiempo que se desee llenar el tanque, el cual se estipula de 5 minutos, se calculará el volumen necesario para este.

Haciendo uso de la ecuación de caudal, se procede a despejar el volumen requerido:

Ecuación 36. Caudal

$$Q = \frac{V}{t}$$

Fuente: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p.

ISBN: 9688805424

Donde:

Q, Caudal $\frac{L}{min}$

V, Volumen L

t, Tiempo min

Despejando el volumen y remplazando los valores en la ecuación se obtiene:

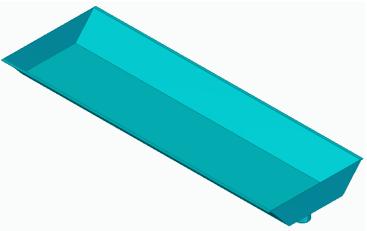
$$V = Q * t$$

$$V = 6.6 \frac{L}{min} * 5 min$$

$$V = 33 L$$

Se desea ubicar el tanque en la parte inferior de la estructura de lavado, por lo tanto, se contará con un espacio determinado, de ancho 700 mm, largo 900 mm, altura 700 mm, teniendo en cuenta esto, se procede a seleccionar un tanque del mercado, que no exceda estas dimensiones, comúnmente los tanques horizontales cuentan con una tapa superior empleada para la limpieza de este, es indispensable contar con esta entrada, ya que en el diseño se empleara para la ubicación de la rejilla y su respectivo mantenimiento, el tanque seleccionado para este diseño cuenta con una tapa superior de 20 cm, para efectuar una limpieza optima es necesario que no sea menor a esta medida, también este debe contar con un drenaje para facilitar la salida de aguas sucias e impurezas.

Figura 92. Tanque de suministro de agua


Capacidad 80 L Alto 38 cm Largo 73 cm Ancho 33 cm Tapa 20 cm

Fuente: Elaboración propia con base en: AMAZON.es, NO BRAND Q-L. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.amazon.es/NO-BRAND-alimentaria-Recipiente-Rectangular/dp/B0819ZC975

- **3.1.8 Rejilla retenedora de impurezas.** Esta rejilla es la encargada de retener las impurezas que se obtienen en el lavado de los tubérculos, se recomienda que un operario este revisando cuando esta se llene para vaciarla y así tener un proceso más eficiente, se ubicará en la parte superior del tanque de suministro.
- **3.1.9 Batea recolectora de agua.** Esta batea es la encargada de recolectar el agua que cae al realizar el lavado de los tubérculos de Sagú, se ubica debajo del cilindro de lavado, sobre unas platinas soldadas a la estructura, consta de unas pestañas de deslizamiento y soporte las cuales facilitan el mantenimiento de la misma, tiene un desagüe, que dirige el agua al tanque de suministro para realizar un constante ciclo, el material es acero inoxidable y su lamina de fabricación es de calibre 12 o 2.670 mm, sus dimensiones y características se encuentran en el Anexo A, Plano 9.

Figura 93. Batea recolectora de agua

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.10 Diseño estructural del Sistema de Lavado. La estructura es la encargada de soportar todos los componentes que conforman el sistema de lavado, por lo tanto, tendrá que ser capaz de soportar el peso de estos, se realizará el análisis a los elementos más críticos de la estructura, es decir, aquellos que soportan la mayor carga, para así seleccionar los perfiles correspondientes a vigas y columnas.

La carga total de estos elementos que conforman el sistema de lavado está dada por el peso del cilindro, aros guía, tubérculos de Sagú y ruedas de soporte, anteriormente en la sección 3.1.3.3, se realizó el cálculo de esta carga, adicionalmente se le incorpora el peso de las ruedas que es aproximadamente 2,5 kg incluyendo soporte y tornillos, por lo tanto, la carga total de todos los componentes es la siguiente:

$$m_{TOTAL} = m_{Sag\'u} + m_{Cilindro} + m_{arogu\'ua} + m_{ruedas}$$

Remplazando los valores se obtiene:

$$m_{TOTAL} = 45.83 \ kg + 88.3 \ kg + (2 * 6.235 \ kg) + (4 * 2.5 \ kg)$$
 $m_{TOTAL} = 156.6 \ kg$

La carga total se calcula con la siguiente Ecuación 22:

$$W_{TOTAL} = m_{TOTAL} * g$$

Donde:

 m_{TOTAL} , peso total del cilindro de lavado kg g, Gravedad m/s^2

Remplazando los valores se obtiene:

$$W_{TOTAL} = 156.6 \ kg * 9.8 \ m/s^2$$

$$W_{TOTAL} = 1534.68 \ N$$

3.1.10.1 Diseño de vigas por Flexión. Para saber si la estructura propuesta, soportara el peso de los elementos, se procede realizar un análisis en la viga más crítica del sistema, a continuación, se muestra la estructura con las respectivas cargas puntuales a la que estará sometida, se realiza el mismo procedimiento de la sección <u>3.1.3.4</u>, para calcular las reacciones en las ruedas de soporte, con la diferencia que ahora se agrega el peso de estas para el análisis adecuado sobre la viga.

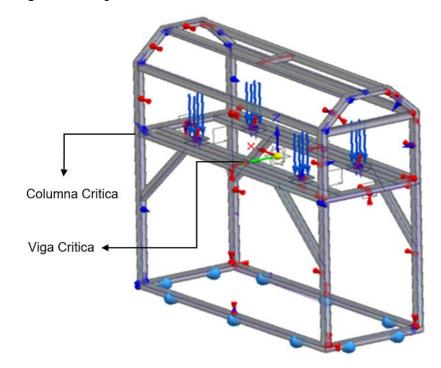
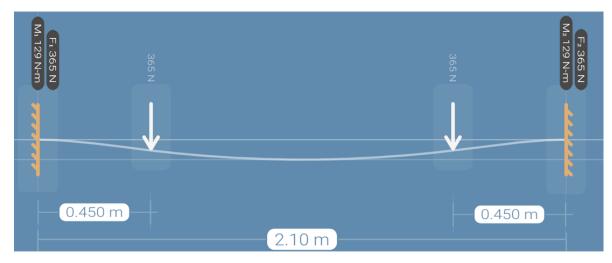
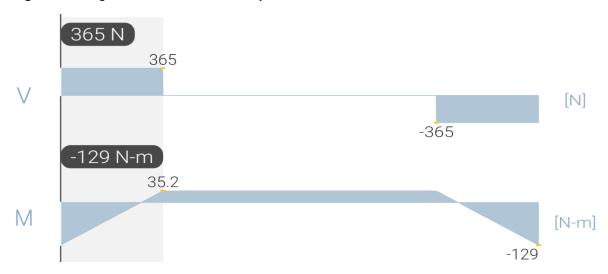



Figura 94. Cargas en la estructura del Sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

Como se evidencia se encuentran dos vigas críticas en el sistema, soportando la misma carga total, por lo tanto, esta carga se divide en dos para el análisis en una viga de 2,1 m de largo, a continuación, se procede a realizar el diagrama de cuerpo libre de la viga.


Figura 95. Diagrama de cuerpo libre de la viga de la estructura del Sistema de Lavado

Fuente: Elaboración propia con base en: Deflexión

Ahora se procede a realizar el diagrama de fuerza cortante y momento flector, con ayuda del software Deflexión.

Figura 96. Diagrama de Fuerza Cortante y Momento Flector

Fuente: Elaboración propia con base en: Deflexión

Como se observa la fuerza cortante máxima es de 365,4 N y el Momento flector máximo es de 129 Nm.

Empleando la ecuación de esfuerzo normal por flexión:

Ecuación 37. Esfuerzo Normal por Flexión

$$\sigma = \frac{M}{S}$$

Fuente: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

Donde:

 σ , Esfuerzo por flexión Pa

M, Momento flector máximo Nm

S, Módulo de sección m3

Se selecciona el material de la estructura, acero estructural A-36, ya que posee características buenas para el diseño, el cual tiene un esfuerzo admisible $\sigma_y = 250 \ MPa$.

Ahora se procede a despejar el módulo de sección y remplazando los datos se obtiene:

$$S = \frac{M}{\sigma}$$

Se asigna un factor de seguridad de FS= 2

$$\sigma = \sigma_y / FS$$

Remplazando los datos se obtiene:

$$S_r = \frac{129 \, Nm}{\frac{250 \, Mpa}{2} * \frac{1000000 \, \frac{N}{m^2}}{1 \, MPa}}$$

Donde:

 S_r , Módulo de sección requerido m^3

$$S_r = 1.032 \ x \ 10^{-6} m^3$$

Es decir se tiene un módulo de sección requerido es de $1.032 \ cm^3$, con el cual realizamos la selección del perfil adecuado para la estructura.

Figura 97. Especificaciones generales del Perfil Cuadrado seleccionado

Fuente: COLMENA. Perfil Estructural Tubular. [en línea]. [consultado el 5 abril, de 2020]. Disponible en: http://www.tuboscolmena.com/web/fichas/ESTRUCTURAL CERRADO.pdf

Se selecciona el perfil cuadrado tubular 50 X 50 con 4 mm de espesor el cual tiene un módulo de sección o elástico de 7,79 cm^3 , donde se cumple:

$$S \ge S_r$$
 $7,79 \ cm^3, \ge 1.032 \ cm^3$

3.1.10.2 Relación de esbeltez y Resistencia de diseño. Se procede a verificar que las columnas de la estructura no sufran pandeo, por lo tanto, se emplea la relación de esbeltez y la resistencia de diseño basados en el libro diseño de estructuras de acero de Mc Cormac, y el diseño de elementos sometidos a comprensión.

Se analizará la columna critica mostrada en la <u>Figura 94</u>, y además de soportar la carga calculada del cilindro, los aros, los tubérculos de Sagú y las ruedas de soporte se le adiciona el peso de la estructura que se observa en la parte superior de la columna critica, para esto se utiliza el software Solid Edge obteniendo que el peso

de la estructura superior es de 125.739 Kg, por lo tanto, la carga total que soportara la columna es la siguiente:

$$m_{TOTAL} = m_{Sag\'u} + m_{Cilindro} + m_{arogu\'ua} + m_{ruedas} + m_{estructurasup}$$

Remplazando los valores se obtiene:

$$m_{TOTAL} = 45.83 kg + 88.3 kg + (2 * 6.235 k) + (4 * 2.5 kg) + 125.739 kg$$

$$m_{TOTAL} = 282.34 \ kg$$

La carga total se calcula con la Ecuación 22

$$W_{TOTAL} = 282.34 \, Kg * 9.8 \, m/s^2$$

$$W_{TOTAL} = 2766.93 N$$

Esta carga se divide en 4, ya que es el número de columnas que la soportan, siendo 691.73 N el valor de la fuerza a la que estará sometida esta columna.

Se procede a calcular la relación de esbeltez de la columna:

Ecuación 38. Relación de Esbeltez

$$Re = \frac{K * L}{r} \le 200$$

Fuente: MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

Dónde:

Re, Relación de esbeltez de la columna K, Factor de longitud efectiva Adimensional

- L, Longitud del elemento m
- r, Radio de giro de la sección transversal m

El radio de giro se obtiene según el catalogo del perfil seleccionado anteriormente en la Figura 97, el cual es $1.90 \ cm^2$ y el factor de longitud efectiva se encuentra en la siguiente figura según la unión de los extremos del elemento.

Tabla 5.1 Valores aproximados del factor de longitud efectiva, K. (b) (e) (f) Las líneas punteadas muestran la forma pandeada de la columna Valor K teórico 0.5 1.0 1.0 2.0 2.0 Valores recomendados 0.65 0.80 1.2 1.0 2.10 2.0 de diseño cuando las condiciones reales son aproximadas Rotación y traslación impedidas Rotación libre y traslación impedida Símbolos para Rotación impedida y traslación libre las condiciones de extremo Rotación y traslación libres

Tabla 7. Factor de longitud efectiva K

Fuente: MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

Se toma un valor de Longitud efectiva K de 0.5 ya que el elemento se encuentra como un empotramiento en ambos extremos.

Remplazando los valores en la <u>Ecuación 38</u>, se obtiene:

$$Re = \frac{0.5 * 1.7 m}{0.019 m}$$
$$45 \le 200$$

La relación de esbeltez obtenida es menor que 200 por lo tanto se concluye que no se presenta pandeo en la columna y que el perfil seleccionado anteriormente es el adecuado.

Ahora se procede a determinar el esfuerzo de pandeo crítico, donde se debe saber si se trata con una columna corta o larga, para esto se emplea la siguiente ecuación:

Ecuación 39. Arriostramiento

$$\lambda = \frac{K * L}{\pi * r} * \sqrt{\frac{\sigma_y}{E}}$$

Fuente: MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

Donde:

- λ , Arriostramiento *Adimensional*
- K, Factor de longitud efectiva Adimensional
- L, Longitud del elemento m
- r, Radio de giro de la sección transversal m
- σ_{v} , Esfuerzo de fluencia del material Pa
- E, Módulo de elasticidad del material Pa

Para el acero estructural A-36 se tiene que:

$$\sigma_y = 250~MPa$$

$$E = 200 GPa$$

Remplazando los valores se obtiene:

$$\lambda = \frac{0.5 * 1.7 m}{\pi * 0.019 m} * \sqrt{\frac{250 X 10^6 Pa}{200 X 10^9 Pa}}$$

$$\lambda = 0.50$$

Si $\lambda \leq 1.5$ Es una columna corta

Si $\lambda \geq 1.5$ Es una columna larga

Debido a que se encuentra en el rango de columna corta se emplea la siguiente ecuación para el esfuerzo critico de pandeo:

Ecuación 40. Esfuerzo critico de Pandeo

$$\sigma_{cr} = \left(0.658^{\lambda^2}\right) * \sigma_y$$

Fuente: MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

Remplazando los valores se obtiene:

$$\sigma_{cr} = (0.658^{0.50^2}) * 250 X 10^6 Pa$$

$$\sigma_{cr} = 225162717.7 \ Pa$$

Por lo tanto, la resistencia de diseño de elementos sometidos a compresión se determina por la siguiente ecuación:

Ecuación 41. Resistencia de diseño

$$R_d = \phi * A_g * \sigma_{cr}$$

Fuente: MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

Donde:

 R_d , Resistencia de diseño N

φ, Resistencia a la compresión 0.9

 A_q , Área gross de la sección transversal m^2

 σ_{cr} , Esfuerzo critico de pandeo Pa

El Área Gross se obtiene según el catalogo del perfil seleccionado anteriormente en la Figura 97, el cual es $5.41 cm^2$.

Remplazando los valores se obtiene:

$$R_d = 0.9 * \left(5.41 \text{ cm}^2 * \frac{1 \text{ m}^2}{10000 \text{ cm}^2}\right) * 225162717.7 \text{ Pa}$$

$$R_d = 109631.7 \text{ N}$$

La resistencia de diseño cumple lo siguiente:

$$R_d \ge P_u$$

Donde:

 P_u , Carga que soporta la columna N

$$109631.7 \ N \ge 691.73 \ N$$

Se concluye que la columna soporta la carga y no presenta pandeo, por lo tanto, es adecuada para el diseño.

3.1.10.3 Cálculo del espesor de la Platina ruedas de soporte. Además de las vigas y columnas, en la estructura se encuentran 4 Platinas donde se pondrán las ruedas de soporte del cilindro de lavado, están ubicadas en las vigas críticas, sin embargo, es importante saber el espesor para que soporten la carga del cilindro, tubérculos de Sagú, aros guía y ruedas, la carga total de todos los componentes es la siguiente:

$$m_{TOTAL} = m_{Sag\'u} + m_{Cilindro} + m_{arogu\'ua} + m_{ruedas}$$

Remplazando los valores se obtiene:

$$m_{TOTAL} = 45.83 kg + 88.3 kg + (2 * 6.235 kg) + (4 * 2.5 kg)$$

$$m_{TOTAL} = 156.6 \, kg$$

La carga total se calcula con la Ecuación 22:

$$W_{TOTAL} = 156.6 \ kg * 9.8 \ m/s^2$$

$$W_{TOTAL} = 1534.68 \, N$$

Esta carga se divide en 4 ya que es el número de platinas que la soportaran.

$$W_{platina} = \frac{1534.68\,N}{4}$$

$$W_{platina} = 383.67 N$$

Con el modulo sección o elástico requerido anteriormente para la viga y el momento máximo flector por la carga <u>Figura 96</u>, se procede a emplear la <u>Ecuación 37</u> de esfuerzo normal por flexión:

$$\sigma = \frac{164,43 \ Nm}{1.315 \ x \ 10^{-6} m^3}$$

$$\sigma = 125041825.1 \, Pa$$

Para despejar el espesor requerido en la platina se tiene:

$$S = \frac{b * h^2}{6} = \frac{M}{\sigma}$$

$$n = \sqrt{\frac{M}{\sigma * \frac{b}{6}}}$$

Remplazando los valores se obtiene:

$$h = \sqrt{\frac{164,43 \, Nm}{125041825.1 \, Pa * \frac{0.135 \, m}{6}}}$$

$$h = 7.64 \, x \, 10^{-3} \, m$$

El espesor requerido para la platina es de 7.64 mm, se procede a seleccionar un espesor más grueso al requerido, con el siguiente catalogo para láminas de acero estructural A-36.

Figura 98. Espesor de lámina seleccionado Catalogo Aceromex

	Espesor		De	9 S O	Peso teórico por placa (kg.)										
	Espesoi			750		Medidas									
Pulg.	Milésimas	mm.	kg./m.²	kg./pie²	3'x6'	3'x8'	3'x10'	4'x8'	4'x10'	5'x10'	5'x15'	5'x20'	6'x10'	6'x20'	8'x20'
3/16"	188	4.76	37.39	3.47	62.52	83.36	104.20	111.14	138.93	173.66	260.49	347.32	208.39	416.79	555.72
1/4"	250	6.35	49.85	4.63	83.36	111.14	138.93	148.19	185.24	231.55	347.32	463.10	277.86	555.72	740.96
5/16"	313	7.94	62.31	5.79	104.20	138.93	173.66	185.24	231.55	289.44	434.16	578.87	347.32	694.65	926.20
3/8"	375	9.53	74.77	6.95	125.04	166.72	208.39	222.29	277.86	347.32	520.99	694.65	416.79	833.58	1,111.44
7/16"	438	11.11	87.23	8.10	145.88	194.50	243.13	259.34	324.17	405.21	607.82	810.42	486.25	972.51	1,296.68

Fuente: ACEROMEX. Catálogo de productos. [en línea]. [consultado el 5 abril, del 2020]. Disponible en: https://www.aceromex.com/assets/Aceromex_Catalogo.pdf

Se selecciona una lámina de acero estructural A-36 de espesor 3/8 de pulgada o 9.53 mm.

- **3.1.10.4** Análisis de la estructura con el Software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si la estructura con las dimensiones y el material establecidos, soporta la carga anteriormente calculada, con el dimensionamiento estipulado.
- **3.1.10.4.1 Desplazamiento en la estructura.** Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la estructura es de 0,344 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

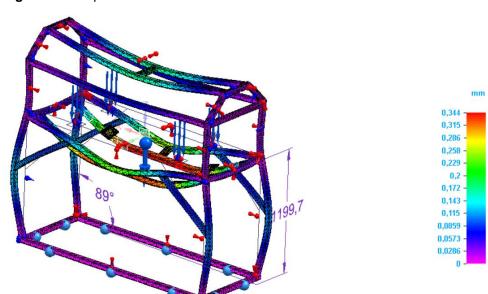


Figura 99. Desplazamiento de la estructura sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.10.4.2 Tensión en la estructura. El esfuerzo Von Misses de la estructura esta entre 0,00523 MPa a 38 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 250 MPa, indicando que el diseño de la estructura es conveniente para las cargas asignadas.

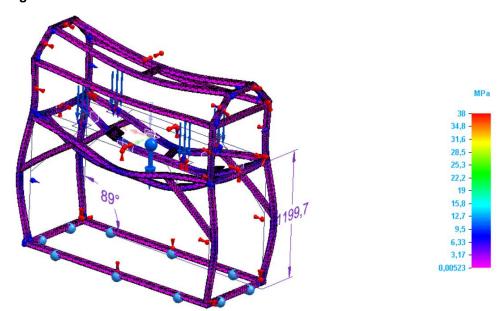
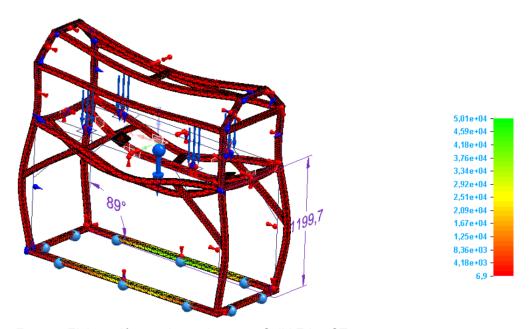



Figura 100. Tensión de Von Misses en la estructura sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.10.4.3 Factor de seguridad en la estructura. Se evidencia que el factor de seguridad mínimo es de 6.9 es decir que las dimensiones calculadas y estipuladas anteriormente para la estructura son las correctas.

Figura 101. Factor de seguridad en la estructura sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.1.10.5 Selección de la Soldadura. Para seleccionar la soldadura se realizará el método propuesto en el libro de diseño de máquinas de Norton, las uniones de la estructura del sistema de lavado, las platinas de las ruedas de soporte y la tolva de alimentación, estarán soldadas, donde se tendrá en cuenta para el análisis el elemento más crítico de la estructura, y luego esta soldadura será empleada en las partes donde la requieran.

El elemento más crítico de la estructura es la viga que recibe la carga del cilindro, aros guía, tubérculos de Sagú y las ruedas de soporte, la soldadura se encontrará sometida a una carga de flexión y cortante directa, y se determinan a partir de las siguientes ecuaciones:

Ecuación 42. Carga por Flexión

$$f_{s} = \frac{M}{S_{w}}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:

 f_s , Carga por flexión Lb/in

M, Momento flector Lb * in

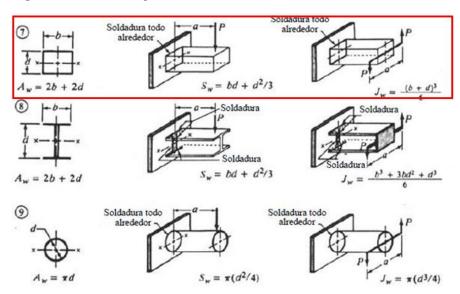
 S_w , Factor geométrico para el análisis de la soldadura in^2

Ecuación 43. Cortante directo

$$f_b = \frac{V}{A_w}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:


 f_b , Cortante directo Lb/in

V, Fuerza cortante Lb

 A_w , Factor geométrico para el análisis de la soldadura in

Los factores geométricos para el análisis de la soldadura, se encuentran en la siguiente figura:

Figura 102. Factores geométricos

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Se selecciona los factores geométricos número 7 ya que se tiene un perfil cuadrado de 50 X 50 mm.

Se procede a calcular la carga por flexión y cortante directo de la soldadura, sabiendo que, en la viga anteriormente calculada para el diseño de la estructura, se determinó una fuerza cortante de 365,4 N y un momento flector máximo de 164,43 Nm en la Figura 96.

Remplazando los valores en la <u>Ecuación 42</u>, de carga por flexión se obtiene:

$$f_b = \frac{164,43 \text{ Nm} * \frac{1 \text{ Lb in}}{0.112985 \text{ Nm}}}{\left(50 \text{ mm} * \frac{1 \text{ in}}{25.4 \text{ mm}}\right) * \left(50 \text{ mm} * \frac{1 \text{ in}}{25.4 \text{ mm}}\right) + \frac{\left(50 \text{ mm} * \frac{1 \text{ in}}{25.4 \text{ mm}}\right)^2}{3}}{3}$$

$$f_s = 281.25 \frac{Lb}{in}$$

Remplazando los valores en la <u>Ecuación 43</u>, de cortante directo se obtiene:

$$f_s = \frac{365,4 N * \frac{0.224809 Lb}{1 N}}{\left(2 * \left(50 mm * \frac{1 in}{25.4 mm}\right)\right) + \left(2 * \left(50 mm * \frac{1 in}{25.4 mm}\right)\right)}$$

$$f_s = 10.43 \frac{Lb}{in}$$

La carga total a la que estará sometida la soldadura, se determina de la siguiente ecuación:

Ecuación 44. Carga total de la soldadura

$$f_T = \sqrt{{f_b}^2 + {f_s}^2}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Remplazando los valores se obtiene:

$$f_{T} = \sqrt{\left(281.25 \frac{Lb}{in}\right)^{2} + \left(10.43 \frac{Lb}{in}\right)^{2}}$$

$$f_{T} = 281.45 \frac{Lb}{in}$$

Se selecciona un electrodo E70, el cual se usa para estructuras, tiene buenas propiedades y una resistencia a la tensión de $70000 \frac{Lb}{in^2}$.

El esfuerzo permisible se obtiene del 30% de la resistencia a la tensión del electrodo⁴⁷:

$$au_{permisible} = 0.3 * Exx$$

Remplazando los valores se obtiene el siguiente esfuerzo permisible de la soldadura seleccionada:

$$\tau_{permisible} = 0.3*70000 \frac{Lb}{in^2}$$

$$\tau_{permisible} = 21000 \frac{Lb}{in^2}$$

A continuación, se procede a calcular la longitud requerida para el hilo de soldadura, con la siguiente ecuación:

Ecuación 45. Longitud requerida para el hilo de soldadura

$$w = \frac{Carga\ total\ sobre\ la\ soldadura}{Esfuerzo\ admisible}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

⁴⁷ NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Remplazando los valores y se obtiene:

$$w = \frac{281.45 \frac{Lb}{in}}{21000 \frac{Lb}{in^2}}$$

$$w = 0.02 in$$

El tamaño requerido para la soldadura es de 0.02 in por lo tanto se selecciona un cordón de tamaño 1/8 in para las partes que requieran ser soldadas.

Figura 103. Tamaños de soldadura

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 800 p. ISBN: 978-607-32-0589-4

3.1.11 Sistema de transmisión de potencia

3.1.11.1 Potencia requerida en el sistema. La potencia requerida para hacer girar el cilindro de lavado, se determina a partir de la siguiente ecuación:

Ecuación 46. Potencia requerida

$$P = M * \omega$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde;

P, Potencia W

M, Momento torsor del cilindro de lavado Nm

 ω , Velocidad angular del cilindro de lavado $\frac{Rad}{s}$

Para determinar el momento torsor del cilindro rotativo de lavado se emplea la siguiente ecuación:

Ecuación 47. Momento torsor del cilindro de lavado

$$M = \sum I * \alpha$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:

 $\sum I$, Sumatorias de inercias $Kg*m^2$

 α , Aceleración angular del cilindro de lavado $\frac{Rad}{s^2}$

Es necesario determinar la cantidad de inercia que se debe vencer para que el cilindro de lavado gire, los cuales son las siguientes:

- Inercia del cilindro de lavado
- Inercia de los tubérculos de Sagú
- Inercia de los aros guía

3.1.11.1.1 Inercia del Cilindro de lavado. El cilindro de lavado es un cilindro hueco, por tal motivo su inercia se determina a partir de la siguiente ecuación:

Ecuación 48. Momento de Inercia de un cilindro hueco

$$I = \frac{1}{2} * m * (r_1^2 + r_2^2)$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:

I, Momento de inercia cilindro de lavado $Kg * m^2$

m, Masa del cilindro de lavado Kg

 r_1 , Radio exterior del cilindro de lavado m

 r_2 , Radio interior del cilindro de lavado m

La masa del cilindro de lavado se obtiene por cálculos anteriores realizados en la sección 3.1.3.1, donde se tiene una masa de 88.3 Kg.

El dimensionamiento del cilindro se estipulo en la sección 3.1.2.

Remplazando los valores se obtiene

$$I = \frac{1}{2} * 88.3 \ Kg * ((0.658 \ m)^2 + (0.653 \ m)^2)$$

$$I = 38 \, Kg * m^2$$

3.1.11.1.2 Inercia de los tubérculos de Sagú. Los tubérculos de Sagú tienen una forma similar a un paraboloide, por lo tanto, se procede a determinar su inercia con la siguiente ecuación:

Ecuación 49. Momento de inercia de un paraboloide

$$I = \frac{1}{6} * m * \left(b^2 + c^2 * \frac{1}{3}\right)$$

Fuente: FRAXDESING. Momentos de inercia. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: http://joelfrax.com/otros/momentos%20inercia.html

Donde:

I, Momento de inercia de un paraboloide (tubérculo de Sagú) $Kg*m^2$

m, Masa de un tubérculo de Sagú Kg

b, Diámetro mayor de un tubérculo de Sagú m

c, Longitud de un tubérculo de Sagú m

El peso de un tubérculo de Sagú según documentos de investigación es de 190 gramos⁴⁸.

Las dimensiones del tubérculo de Sagú, se mostraron en la sección 1.1.1, las cuales tienen un tamaño generalmente de 5 cm de ancho y 10 cm de largo.

Remplazando los valores en la ecuación se obtiene:

$$I = \frac{1}{6} * 0.190 Kg * \left((0.05 m)^2 + (0.1)^2 * \frac{1}{3} \right)$$

$$I = 0.0002 Kg * m^2$$

Para determinar la inercia total de los tubérculos de Sagú que se encuentran ubicados en el cilindro de lavado, es necesario determinar el número de tubérculos, sabiendo que el sistema de lavado tiene una capacidad de 550 Kg/h y que los tubérculos estarán lavándose dentro del cilindro por 5 minutos, es decir, la cantidad de tubérculos que se encuentran dentro del cilindro por cada lavado, se determina de la siguiente forma:

$$550 \frac{Kg}{h} * \left(\frac{1 \text{ hora}}{60 \text{ minutos}}\right) = 9.17 \frac{Kg}{min}$$
$$9.17 \frac{Kg}{min} * 5 \text{ minutos} = 45.85 Kg$$

Por lo tanto, cada 5 minutos que dura el lavado de los tubérculos de Sagú, se encuentran dentro del cilindro, 45.85 Kg de tubérculos, para determinar el número de tubérculos de esta cantidad se procede a dividir la cantidad de tubérculos entre el peso de un solo tubérculo.

$$N$$
úmero = $\frac{45.85 \, Kg}{0.190 \, Kg}$
 N úmero = 241 Tubérculos de Sagú

185

⁴⁸ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

Por lo tanto, la inercia total de los tubérculos de Sagú, se determina a partir de la siguiente ecuación:

$$I_{TS} = N$$
ú $mero*I_{Sag}$ ú $I_{TS} = 241*0.0002~Kg*m^2$ $I_{TS} = 0.05~Kg*m^2$

3.1.11.1.3 Inercia de los Aros Guía. Los aros guía son cilindros huecos, por tal motivo su inercia se determina a partir de la <u>Ecuación 48</u>.

La masa de un aro guía se obtiene por cálculos realizados en la sección 3.1.3.2, donde se tiene una masa de 6.235 Kg.

El dimensionamiento de los aros guía se estipulo en la sección 3.1.2.7.

Remplazando lo valores se obtiene:

$$I = \frac{1}{2} * 6.235 Kg * ((0.704 m)^{2} + (0.658 m)^{2})$$

$$I = 3 Kg * m^{2}$$

Debido a que en el sistema hay son 2 aros guía la inercia total es la siguiente:

$$I = 3 Kg * m^2 * 2$$

$$I = 6 Kg * m^2$$

Se procede a calcular la inercia total en el sistema:

$$\sum I = I_{cilindro} + I_{Sag\acute{u}} + I_{Aros}$$

$$\sum I = 38 Kg * m^2 + 0.05 Kg * m^2 + 6 Kg * m^2$$

$$\sum I = 44.1 Kg * m^2$$

Una vez calculadas las inercias a vencer, se procede a calcular la aceleración angular del cilindro de lavado, empleando la siguiente ecuación:

Ecuación 50. Aceleración angular del cilindro de lavado

$$\alpha = \frac{\omega}{t}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:

 α , Aceleración angular del cilindro de lavado $\frac{Rad}{s^2}$

 ω , Velocidad angular del cilindro de lavado $\frac{Rad}{s}$

t, tiempo seg

Teniendo las revoluciones por minuto del cilindro de lavado, estipuladas según los parámetros de diseño en el <u>Cuadro 4</u>, las cuales son 45 RPM, se procede a calcular la velocidad angular, empleando la siguiente ecuación:

Ecuación 51. Velocidad angular

$$\omega = \frac{2 * \pi * n}{60}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Dónde:

 ω , Velocidad angular del cilindro de lavado $\frac{Rad}{s}$

n, Revoluciones por minuto del cilindro de lavado RPM

Remplazando los valores se obtiene:

$$\omega = \frac{2 * \pi * 45 RPM}{60}$$

$$\omega = 4.71 \frac{Rad}{s}$$

Para determinar la aceleración angular se determina el tiempo que se llevara acabado para alcanzar la velocidad angular en una revolución.

$$t = \frac{2 * \pi}{\omega}$$

$$t = \frac{2 * \pi}{4.71 \frac{Rad}{s}}$$

$$t = 1.33 seg$$

Teniendo los valores para calcular la aceleración angular se procede a remplazar en la Ecuación 50 y se obtiene:

$$t = \frac{2 * \pi}{4.71 \frac{Rad}{s}}$$

$$\alpha = 3.5 \frac{Rad}{s^2}$$

A continuación, se procede a calcular el momento torsor empleando la <u>Ecuación 47</u>, remplazando los valores se obtiene:

$$M = 44.1 \, Kg * m^2 * 3.5 \, \frac{Rad}{s^2}$$

$$M = 154.4 \, Nm$$

Una vez calculado los datos necesarios para determinar la potencia requerida, se procede a remplazar los valores en la <u>Ecuación 46</u>.

$$P = 154.4 \ Nm * 4.71 \frac{Rad}{s}$$

P = 727.23 W
P = 0.97 HP

Se buscará un motor con una potencia de 1.5 HP.

3.1.11.2 Diseño del sistema de transmisión de potencia. De acuerdo a la sección 3.1.2.2, se busca en el diseño ahorro de costos, y un sencillo funcionamiento, por lo cual se estableció que el cilindro de lavado actuara como la polea mayor del sistema de transmisión de potencia y a su vez la conducida, la cual tiene un diámetro exterior normalizado de 724 mm y una correa tipo C 22 x 14, acorde a esto se procede a determinar los demás componentes de este sistema.

Teniendo en cuenta la potencia necesaria calculada anteriormente para el sistema de lavado, la cual es de 1.5 HP, y según el manual de poleas en V Intermec, donde se recomienda trabajar los cálculos pertinentes con la potencia de diseño, se procede a emplear la siguiente ecuación:

Ecuación 52. Potencia de diseño

$$P_d = P * f_s$$

Fuente: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Donde:

 P_d , Potencia de diseño HP

P. Potencia HP

f_s, Factor de servicio Adimensional

Basados en el manual, procedemos a seleccionar el factor de servicio según el tipo de máquina a diseñar.

Figura 104. Factor de servicio

TIPOS DE MÁQUINAS O EQUIPOS	SERVICIO INTERMITENTE	SERVICIO NORMAL	SERVICIO CONTINUO
Agitadores para líquidos Sopladores y aspiradoras Transportadores de trabajo lígero Ventiladores de hasta 10 caballos de fuerza	1.1	1.2	1.3
Transportadores de banda para arena, grano, etc Bombas rotativas de desplazamiento positivo Máquinas herramientas Maquinaria de lavanderia Mezcladores de masa Ejas de linea Generadores Maquinaria de imprenta Taladros-prensas-cortadores Cribas giratorias y vibratorias Ventiladores de mas de 10 caballos de fuerza	1.2	1.3	1,4
Maquinaria para aserrios y trabajos en madera Transportadores (arrastre o tornillo) Compresores de pistón Molinos de martillo Pulverizadores Excitadores Maquinaria textil Bombas de pistón Elevadores cangiônes Maquinaria para ladrillos Sopladores de desplazamiento positivo	1.4	1.5	1.6
Trituradoras (giratorias-mandibula-rodillo) Extrusoras-molinos de caucho Molinos de bolas Malacates	1.5	1.6	1.8

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Remplazando los valores en la Ecuación 52, se obtiene:

$$P_d = 1.5 \, HP * 1.2$$

$$P_d = 1.8 \, HP$$

Según el manual de poleas en V de Intermec, la polea normalizada tipo C de menor diámetro que se ajusta al sistema de transmisión de potencia es de 190 mm, por lo tanto, se procede a calcular las RPM de entrada que debe tener el sistema.

Ecuación 53. Relación de velocidades poleas

$$N_1 * D_1 = N_2 * D_2$$

Fuente: Relación de velocidades sistema de poleas con correa. [Sitio web]. [consultado el 9 abril, del 2020]. Disponible en:

https://eudotec.wordpress.com/2013/03/06/relacion-develocidades/

Donde:

 N_1 , Revoluciones por minuto de la polea motriz RPM

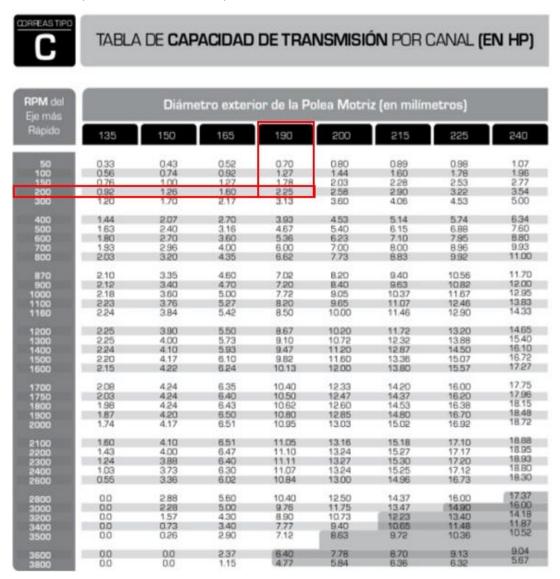
 D_1 , Diámetro de la polea motriz mm

 N_2 , Revoluciones por minuto de la polea conducida RPM

D₂, Diámetro de la polea conducida mm

Las revoluciones por minuto a las que gira el cilindro de lavado establecidas en los parámetros de diseño, son las mismas de la polea conducida, es decir, 45 RPM.

Despejando las revoluciones por minuto de la polea motriz y remplazando los datos se obtiene:

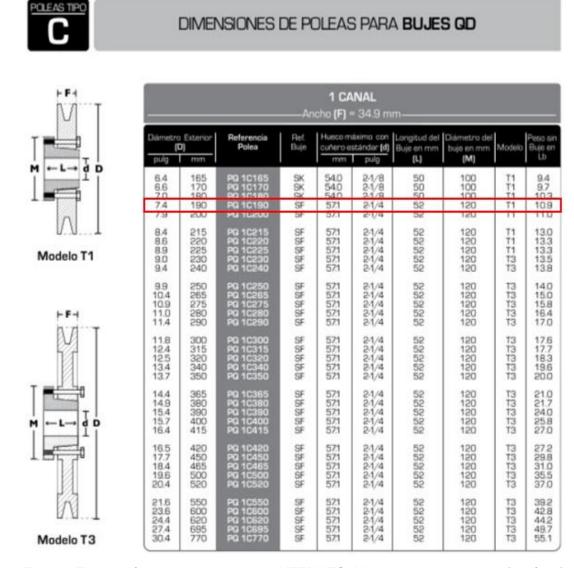

$$N_1 = \frac{N_2 * D_2}{D_1}$$

$$N_1 = \frac{45 \, RPM * 724 \, mm}{190 \, mm}$$

$$N_1 = 171 RPM$$

Teniendo en cuenta el diámetro de la polea motriz y la potencia de diseño, se procede a verificar si este diámetro efectivamente va acorde al sistema de transmisión de potencia y a las revoluciones por minuto de entrada calculadas anteriormente, empleando la siguiente Tabla:

Tabla 8. Capacidad de transmisión por canal



Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

De acuerdo al diámetro de la polea motriz seleccionado y a la potencia de diseño, se verifica que la transmisión de potencia se realizara efectivamente.

Una vez conocido el diámetro requerido de la polea motriz, se procede a seleccionar sus respectivas características, empleando la siguiente tabla:

Tabla 9. Dimensiones de poleas comerciales

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Se seleccionó una polea motriz de "referencia PQ 1-C190"49.

⁴⁹ INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Se procede a calcular la distancia entre centros recomendada por el manual de poleas de Intermec⁵⁰, empleando la siguiente ecuación:

Ecuación 54. Distancia entre centros recomendada

$$C = 1.5 * (D_{p_C} + D_{P_M})$$

Fuente: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Donde:

C, Distancia entre centros de las poleas mm

 D_{p_C} , Diámetro exterior de la polea conducida mm

 D_{PM} , Diámetro exterior de la polea motriz mm

Remplazando los valores se obtiene:

$$C = 1.5 * (724 mm + 190 mm)$$

$$C = 1371 \, mm$$

Donde se cumple con el intervalo de distancias nominales entre centros, que debe estar entre:

Ecuación 55. Relación de distancias nominales entre centros

$$D_{p_C} < C < 3 * (D_{p_C} + D_{P_M})$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

⁵⁰ INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

A continuación, se calcula la longitud de la correa empleando la siguiente ecuación:

Ecuación 56. Longitud de paso

$$L = 2 * C + 1,57 * \left(D_{p_C} + D_{P_M}\right) + \frac{(D_{p_C} + D_{P_M})^2}{4 * C}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Dónde:

L, Longitud de la correa mm

C, Distancia entre centros de las poleas mm

 D_{p_c} , Diámetro exterior de la polea conducida mm

 D_{P_M} , Diámetro exterior de la polea motriz mm

Remplazando los valores se obtiene:

$$L = 2 * 1371 mm + 1,57 * (724 mm + 190 mm) + \frac{(724 mm + 190 mm)^2}{4 * 1371 mm}$$

$$L = 4329 \ mm$$

Ahora se procede a re calcular la distancia entre centros real, empleando la siguiente ecuación:

Ecuación 57. Distancia entre centros de poleas

$$C = \frac{B + \sqrt{B^2 - 32 * (D_{p_C} - D_{P_M})^2}}{16}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

C, Distancia entre centros de las poleas mm

 D_{p_c} , Diámetro exterior de la polea conducida mm

 D_{P_M} , Diámetro exterior de la polea motriz mm

$$B = 4 * L - 6.28 * (D_{p_C} - D_{P_M})$$

Remplazando los valores se obtiene:

$$B = 4 * 4329 mm - 6.28 * (724 mm - 190 mm)$$

$$B = 13962.5 \, mm$$

$$C = \frac{13962.5 \, mm + \sqrt{13962.5 \, mm^2 - 32 * (724 \, mm - 190 \, mm)^2}}{16}$$

$$C = 1725 mm$$

Se procede a calcular el ángulo de contacto de la banda en cada polea, empleando la siguiente ecuación:

Ecuación 58. Ángulo de contacto

$$\theta_1 = 180^{\circ} - 2 * \sin^{-1} \left(\frac{(D_{p_C} - D_{P_M})}{2 * C} \right)$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

 θ_1 , Ángulo de contacto °

C, Distancia entre centros de las poleas mm

 D_{p_C} , Diámetro exterior de la polea conducida mm

 D_{P_M} , Diámetro exterior de la polea motriz mm

Remplazando los valores en la ecuación se obtiene:

$$\theta_1 = 180^\circ - 2 * \sin^{-1} \left(\frac{(724 \ mm - 190 \ mm)}{1725 \ mm} \right)$$

$$\theta_1 = 144$$
 °

Con el ángulo de contacto de la banda en cada polea, se procede a calcular la cantidad de bandas necesarias para el sistema, teniendo en cuenta la potencia de diseño, empleando la siguiente ecuación:

Ecuación 59. Número de bandas

$$N = \frac{P_d}{P_c}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

N, Numero de bandas

 P_d , Potencia de diseño HP

 P_c , Potencia corregida HP

La potencia corregida se determina con factores de corrección con respecto al ángulo de contacto de la banda en cada polea y la longitud de la banda, empleando la siguiente ecuación:

Ecuación 60. Potencia corregida

$$P_c = C_\theta * C_L * P_d$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

 P_c , Potencia corregida HP

 C_{θ} , Factor de corrección por ángulo de contacto

 C_L , Factor de corrección por longitud de banda

 P_d , Potencia de diseño HP

Estos factores se determinan utilizando las siguiente figura y tabla:

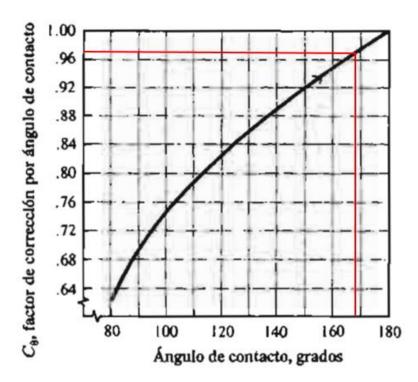


Figura 105. Factor de corrección por ángulo de contacto

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

El factor de corrección por el ángulo de contacto de la banda con cada polea obtenido es de 0.90.

Tabla 10. Factor de corrección por longitud de la correa

		SECCIÓN DE LA CORREA									
_		"0"	"A"	"B"	"C"	"D"	"E"				
	16	0.80	1			1000					
	24	0.83			1						
	26	0.84	0.81	2307		100					
- 1	31	0.89	0.84			3.00					
	35	0.92	0.87	0.81		163					
	38	0.93	0.88	0.83		100					
	42	0.95	0.90	0.85	1						
	46	0.97	0.92	0.87		1					
	51	0.99	0.94	0.89	0.80						
	55	1.00	0.96	0.90	0.81	What is					
	60	The state of	0.98	0.92	0.82	15-67					
- 1	68		1.00	0.95	0.85	1922					
	75	10.71	1.02	0.97	0.87						
	80		1.04	0.98	0.89						
	81		1.04	0.98	0.89	1 1201	1.8				
0	85	0.0	1.05	0.99	0.90	- 171_1					
	90		1.06	1.00	0.91	75.5	V.				
3	96	(7.15)	1.08	1.02	0.92	-meg					
0	97	100	1.08	1.02	0.92	7000					
2	105		1.10	1.04	0.94						
5	112		1.11	1.05	0.95	0.05					
3	120 128		1.13 1.14	1.07	0.97	0.86					
20	144		1.14	1.08	0.98 1.00	0.87	2				
Longitud de la correa	158	= =		1.11	1.02	0.90	35				
	173			1.15	1.04	0.92					
-	180	1		1.16	1.05	0.94	0.91				
	195			1.18	1.07	0.96	0.92				
	210			1.19	1.08	0.98	0.94				
	240			1.22	1.11	1.00	0.96				
1	270			1.25	1.14	1.03	0.99				
	300	1.0		1.27	1.16	1.05	1.01				
	330			10000000	1.19	1.07	1.03				
	360				1.21	1.09	1.05				
	390				1.23	1.11	1.07				
	420		1	N. Le	1.24	1.12	1.09				
	480	3		2010		1.16	1.12				
	540					1.18	1.14				
	600					1.20	1.17				
	660			100		1.23	1.19				

Fuente: Elaboración propia con base en: MENDOZA, Alvaro y ROMANO, Freddy. Correas industriales cálculo y selección. [en línea]. 25 p. [consultado el 8 abril, del 2020]. Disponible en: http://bdigital.unal.edu.co/43065/6/Correasindustriales.pdf

El factor de corrección por longitud de la correa para una correa de 4329 mm lo que es equivalente a 173 pulgadas, es de 1.04.

Se procede a remplazar estos valores en la <u>Ecuación 60</u>, de potencia corregida y se obtiene:

$$P_c = 0.90 * 1.04 * 1.8 HP$$
 $P_c = 1.7 HP$

Teniendo la potencia corregida, se procede a calcular el número de bandas, empleando la Ecuación 59, remplazando los valores se obtiene:

$$N = \frac{1.8 \, HP}{1.7HP}$$

$$N = 1.04$$

El sistema de transmisión de potencia de polea - correa, funcionará con una banda o correa en trapezoidal tipo C.

3.1.11.3 Selección del Motor reductor. Teniendo en cuenta la potencia necesaria para el sistema de lavado y las RPM de entrada a las que funcionara satisfactoriamente el sistema de transmisión de potencia, según cálculos realizados anteriormente, se procede a seleccionar un motor reductor que cumpla con los siguientes parámetros

- La potencia del motor es de 1.5 HP
- Las revoluciones por minuto salida 171 RPM
- Torque

El torque, se determina empleando la siguiente ecuación:

Ecuación 61. Torque

$$T = \frac{63025 * HP}{n}$$

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US_G1013
Nordbloc_Catalog_2719.pdf

Donde;

T, Torque Lb * in

HP, Potencia HP

n, Velocidad de salida del motor reductor o entrada para el sistema de poleas RPMRemplazando los valores en la ecuación, se obtiene:

$$T = \frac{63025 * 1.5 HP}{171 RPM}$$

$$T = 552 lb * in$$

Sabiendo los parámetros requeridos del motor reductor, se procede a seleccionar empleando el catálogo de motores NORD⁵¹, el cual para una selección adecuada recomienda establecer un factor de servicio, dependiendo de la aplicación para la cual se utilizara el motor, a partir de las siguientes tablas, basadas en la "norma AGMA Standard 6013-A06"⁵².

Figura 106. Aplicación del motor reductor

	Loa	Load Duration					
Application	Up to 3 hrs per day	3-10 hrs per day	10 hrs				
LAUNDRY TUMBLERS	II	II	II				
LAUNDRY WASHERS	II	II	III				
LUMBER INDUSTRY							
Barkers							
Spindle Feed	II	II	II				
Main Drive	III	III	III				
Conveyors							
Burner	II	II	II				
Main or Heavy Duty	II	II	II				
Main log	III	III	III				
Re-saw, Merry-Go-Round	II	II	II				
Slab	III	III	III				
Transfer	II	II	II				

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/b w/US G1013 Nordbloc Catalog 2719.pdf

NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US_G1013_Nordbloc_Catalog_2719.pdf
52 Ibíd., p. 48.

Figura 107. Factor de servicio

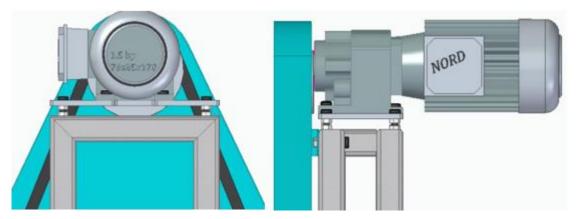
Class Numbers	f _B
I	1.0 - 1.39
II.	1.4 - 1.99
III	≥ 2.0

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US G1013 Nordbloc Catalog 2719.pdf

El factor de servicio según la aplicación, corresponde a un rango de 1.4 – 1.99.

A continuación, se selecciona el motor reductor adecuado según los parámetros establecidos.

Figura 108. Especificaciones generales del Motor reductor seleccionado

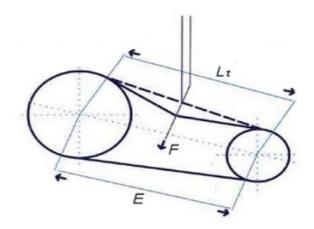

Motor Power	Output Speed	Output Torque	Berkstockend like	AGMA Class	Gear Ratio	Standard Bearings		Heavy Duty Bearings (VL)		Model Type	Weight	Dim. Page
P. [hp]	n _z	T _z	f _a		L	F _{HH} OHL [lb]	F _{AN} Thrust [lb]	F _{RVL} OHL [lb]	F _{AVL} Thrust [lb]	Pe	[ib]	
1.5	133	712	0.9		13.10	1287	2023	2384	4952	SK 771.1 - 90 SP/4	59	167
	169	560	1.5	II.	10.30	1197	2023	2385	4634		-	
	205	462	2.4	III	8.50	1129	2023	2386	4393			
	226	418	3.1	111	7.69	1095	2023	2386	4270			
	322	294	4.9	III	5.41	981	1849	2387	3862			
	351	269	6.8	111	4.96	954	1800	2387	3768			
	421	225	9.3	111	4.14	901	1701	2387	3575			
	464	204	11.5	III	3.75	873	1618	2387	3475			
	514	184	12.4	10.	3.38	845	1537	2387	3373			

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US G1013 Nordbloc Catalog 2719.pdf

Se selecciona un motor reductor, SK 771.1 – 90 SP/4, sus dimensiones y caracteristicas se encuentran en el Anexo E.

3.1.11.4 Tensión de la correa. Se contará con un sistema básico de tensión de la correa, el cual se encargará de tensionarla cuando se requiera, para obtener una transmisión de potencia más efectiva, está compuesto por una placa (Ver Anexo A, Plano 45), donde ira apoyado el motor del sistema de lavado, esta se unirá a la estructura por medio de pernos que serán los encargados de desplazar verticalmente hacia arriba al motor y a su vez a la correa, tensándola por medio de tuercas hasta obtener la tensión deseada para el sistema, a continuación se muestra una imagen.

Figura 109. Vistas del sistema de tensado de la correa



Fuente: Elaboración propia con base en: Solid Edge ST10

Es importante tener en cuenta que una tensión muy alta en la correa puede causar un exceso de fricción y una tensión muy baja puede causar deslizamiento, perjudicando la transmisión de potencia.

La tensión de una correa, consiste en someterla a una deflexión causada por una fuerza al tramo medio de esta.

Figura 110. Tramo medio de la correa

Fuente: INGEMECANICA. Correas de transmisión cálculo y diseño. [Sitio web]. [consultado el 9 abril, de 2020]. Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn121.html

La cual se mide a partir de instrumentos de medición, sin embargo, para saber cuánta tensión aplicar en el sistema se procede a calcular la longitud de su tramo medio (Lt), a partir de la siguiente ecuación:

Ecuación 62. Longitud del tramo medio de la correa

$$L_t = \sqrt{(C)^2 + \left(\frac{D-d}{2}\right)^2}$$

Fuente: SLIDESHARE. Transmisión por correas. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.slideshare.net/ALBERTOFLORESSANTAND/transmision-por-correas-62985739

Donde:

- C, Distancia entre centros de las poleas
- d, Diámetro de la polea menor
- D, Diámetro de la polea mayor

La deflexión que se debe obtener debe cumplir con lo siguiente:

Deflexión 0.02 mm por mm de largo si $L_t < 500 \ mm$

Deflexión 0.01 mm por mm de largo si $L_t > 500 \ mm$

Remplazando los valores calculados anteriormente en la sección <u>3.1.11.2</u>, se obtiene el siguiente valor para el tramo medio de la correa:

$$L_t = \sqrt{(1725 \ mm)^2 + \left(\frac{724 \ mm - 190 \ mm}{2}\right)^2}$$

$$L_t = 1746 \ mm$$

Como se evidencia la longitud del tramo medio de la correa es mayor a 500 mm, por lo tanto, la deflexión debe ser de 0.01 mm por mm de largo, a partir de la siguiente figura basándose en el manual de correas de Dunlop, se conocerá la fuerza que se debe aplicar para obtener la deflexión.

En el sistema de lavado se tiene una correa tipo C, se procede a determinar la fuerza requerida.

Tabla 11. Fuerza de deflexión en correas

	Fuerza de deflexión requerida para medir la tensión de instalación en transmisiones con correas trapezoidales en V										
	Rango de diámetro de poleas pequeñas (mm)	Condición 1 - De del tramo si el la	flexión de 0,02 por m rgo del tramo es de 5	ilímetro del largo i00 mm o menor	Condición 2 - Defiexión de 0,01 por milímetro del largo del tramo si el largo del tramo supera los 500 mm						
		Fuerza F d del tram	e deflexión requerida o para velocidad de c	en el centro orreas de:	Fuerza F de deflexión requerida en el centro del tramo para velocidad de correas de:						
		De 0 m/s a 10 m/s (Nw)	De 10 m/s a 20 m/s (Nw)	De 20 m/s a 30 m/s (N w)	De 0 m/s a 10 m/s (N w)	De 10 m/s a 20 m/s (N w)	De 10 m/s a 30 m/s (Nw)				
z	56 a 100	8 a 12	7 a 9,5	6 a 7,5	4 a 6	3,5 a 5	3 a 4				
	arriba de 100	12 a 17	10 a 14	9 a 12	6 a 8,5	5,5 a 7	4,5 a 6				
A	80 a 140	16 a 24	13 a 19	10 a 16	8 a 12	6,5 a 9,5	5,5 a 8				
	arriba de 140	24 a 35	19 a 28	16 a 24	12 a 18	9,5 a 14	8 a 12				
В	125 a 200	32 a 48	26 a 38	20 a 32	16 a 24	13 a 19	10 a 16				
	arriba de 200	48 a 70	38 a 58	32 a 48	24 a 35	19 a 29	16 a 24				
С	200 a 400	62 a 92	52 a 76	40 a 62	31 a 46	26 a 38	20 a 31				
	arriba de 400	92 a 140	72 a 116	62 a 92	46 a 70	38 a 58	31 a 46				
D	355 a 600	124 a 180	164 a 152	84 a 124	62 a 90	52 a 76	42 a 62				
	arriba de 600	180 a 268	152 a 230	124 a 180	90 a 134	76 a 115	62 a 90				

Fuente: DUNLOP. Correas de transmisión industrial. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: http://www.dunlop.com.ar/catalogos/03-Catalogodecorreasindustriales.pdf

La fuerza de tensión recomendada de la correa debe estar entre 31 a 46 N, verificar la tensión cada 15 o 20 días aproximadamente es importante para obtener una transmisión eficiente, si la fuerza de tensión de la correa se encuentra por debajo a la anteriormente determinada, se encuentra baja de tensión, mientras que si la fuerza está por encima se encuentra sobre tensionada.

3.1.11.5 Guarda correa. La guarda correa es la encarga de impedir el acceso a la zona de la correa, la cual estará en constante movimiento de rotación, evitando accidentes laborales y protegiendo a su vez los componentes de la máquina, para un correcto funcionamiento, sus dimensiones y características se encuentran en el Anexo A, plano 46.

Figura 111. Guarda correa Lavadora

Fuente: Elaboración propia

3.1.12 Selección de tornillos. Se procede a seleccionar los tornillos con los cuales se unirán la tolva de alimentación a la estructura, estos estarán sometidos a la carga de la tolva y de los tubérculos de Sagú, soportando la siguiente fuerza total.

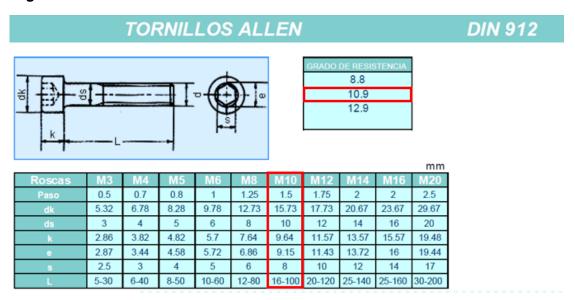
Empleando el Software Solid Edge ST10, se obtiene la masa de la tolva de alimentación del Sistema de lavado, para posteriormente calcular la carga total con la Ecuación 22.

Propiedades físicas Definidas por el usuario Global Principales Volumen: Sistema de coordenadas: 2755891,528 mm³ 2217480,94 mm² 22,122 kg Espacio modelo Centro de masa Centro de volumen Mostrar s ímbolo Acero inoxidable, 304 X: 385,51 mm X: 385,51 mm Densidad: Y: -322,23 mm Y: -322,23 mm 8027,000 kg/m^3 Z: -83,09 mm Z: -83,09 mm Cambiar Momentos de inercia de la masa Precisión (de 0 a 1): + 4,377 kg-m^2 4,927 kg-m^2 7,808 kg-m^2 ✓ Actualizar al guardar -2,744 kg-m^2 -0.983 kg-m^2 0.595 kg-m^2 Las propiedades físicas están actualizadas Actualizar

Figura 112. Masa de la tolva de alimentación del sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

$$m_{Total} = m_{Tolva} + m_{Sag\acute{u}}$$
 $m_{Total} = 22.122 \, Kg + 60 \, Kg$
 $m_{Total} = 82.122 \, Kg$
 $W_{TOTAL} = m_{TOTAL} * g$
 $W_{TOTAL} = 82.122 \, Kg * 9.8 \, m/s^2$
 $W_{TOTAL} = 804.8 \, N$


Esta carga será dividida en el número de tornillos, el cual será 6, por lo tanto, se tiene una carga individual de:

$$W_{tornillo} = \frac{804.8 \, N}{6}$$

$$W_{tornillo} = 134.13 \, N$$

Se seleccionan tornillos Allen M10.

Figura 113. Tornillos seleccionados

Fuente: GESTIONDECOMPRAS. Catalogo tornilleria. [en línea]. [consultado el 9 abril, de 2020]. Disponible en:

https://www.gestiondecompras.com/files/products/mechanical_components_hardware/pernos_tornilleria_tuercas_arandelas_varilla_roscada_din_933_934_7989_125_127_4034_975_555_iso.pdf

Donde se tiene que cumplir lo siguiente:

$$F_{v,Ed} \le F_{v,Rd}$$

Donde:

 $F_{v,Ed}$, Solicitante del cortante N

 $F_{v.Rd}$, Resistencia a la cortante del tornillo N

La solicitante del cortante, en el análisis es la carga a la que estará sometido el tornillo calculada anteriormente:

$$F_{v,Ed} = 134.13 \, N$$

La resistencia a la cortante del tornillo teniendo en cuenta su grado de resistencia que es 10.9, se calcula empleando la siguiente ecuación:

Ecuación 63. Resistencia a la cortante del tornillo

$$F_{v,Rd} = \frac{0.5 * f_{ub} * A_s}{\gamma_{Mb}}$$

Fuente: INGEMECANICA. Diseño y cálculo de las uniones atornilladas. Clases de tornillos. [Sitio web] [Consultado el 7 abril, de 2020] Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn32.html.

Donde:

- , Resistencia a la cortante del tornillo
- , Resistencia a la tracción del tornillo
- , Área del tornillo resistente
- , Coeficiente de seguridad

La resistencia a la tracción del tornillo depende del grado de resistencia de este, por lo tanto, se procede a seleccionar.

Figura 114. Valores del límite elástico y de la resistencia a tracción ultima de tornillos

Valores nominales del límite elástico f_{yb} y de la resistencia a tracción última f_{ub} de tornillos									
Tipo de tornillo	4.6	4.8	5.6	5.8	6.8	8.8	10.9		
f_{yb} (N/mm ²)	240	320	300	400	480	640	900		
f_{ub} (N/mm ²)	400	400	500	500	600	800	1000		

Fuente: INGEMECANICA. Diseño y cálculo de las uniones atornilladas. Clases de tornillos. [Sitio web] [Consultado el 7 abril, de 2020] Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn32.html.

El área del tornillo resistente está dada por el área de un circulo, sabiendo que es un tornillo M10 se procede a calcular en la siguiente ecuación:

Ecuación 64. Área de un circulo

$$A = \pi r^2$$

Fuente: UNIVERSOFORMULAS. Área del círculo. [Sitiio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-circulo/

Remplazando el valor se obtiene:

$$A = \pi * (5 mm)^2$$

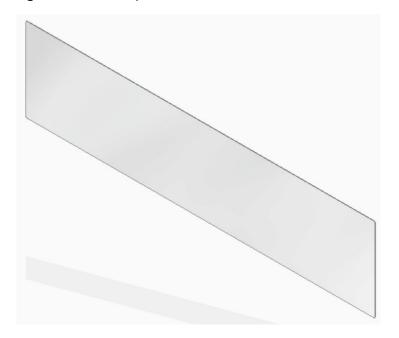
$$A = 78.54 mm^2$$

El coeficiente de seguridad para resistencias de tornillos es de 1,25⁵³.

A continuación, se procede a calcular la resistencia a la cortante del tornillo, remplazando los valores en la <u>Ecuación 62</u>, se obtiene:

$$F_{\nu,Rd} = \frac{0.5 * 1000 \frac{N}{mm^2} * 78.54 \ mm^2}{1.25}$$

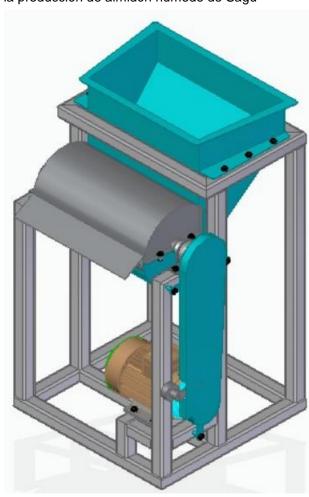
$$F_{v,Rd} = 31416 N$$


Se evidencia que cumple con la condición anteriormente planteada:

$$134.13 \ N \le 31416 \ N$$

3.1.13 Acrílicos. Como elemento adicional se recomienda poner 2 acrílicos, en los costados de la estructura del sistema de lavado, lo cuales evitaran algún accidente laboral y salpicaduras del proceso, sus dimensiones y características se encuentran en el Anexo A, Plano 7.

⁵³ INGEMECANICA. Diseño y cálculo de las uniones atornilladas. Clases de tornillos. [Sitio web] [Consultado el 7 abril, de 2020] Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn32.html.


Figura 115. Acrílico protector sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2 DISEÑO DEL SISTEMA DE RALLADO

Este sistema es el encargado de rallar el tubérculo previamente lavado, con el fin de romper las fibras que componen el tubérculo y de esta forma extraer el almidón presente en él, para esto es necesario rallarlo, sin embargo, no puede desmenuzar completamente el producto ya que se puede perder almidón en el proceso y tampoco pueden quedar trozos muy grandes por que no se desprendería completamente el almidón deseado.

Figura 116. Sistema de rallado de la máquina para la producción de almidón húmedo de Sagú

Fuente: Elaboración propia.

3.2.1 Diseño y dimensionamiento de la tolva de alimentación. La tolva de alimentación es por donde ingresara la cantidad estipulada de tubérculos de Sagú a la etapa de rallado, esta operación se realiza de forma continua proveniente de la salida del sistema de lavado a la entrada del sistema de rallado, por lo tanto, es necesario realizar el dimensionamiento que cumpla con los requerimientos determinados.

Figura 117. Tolva de alimentación sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge

3.2.1.1 Calculo del volumen requerido de la tolva. Para realizar el cálculo determinado del volumen se procede a utilizar la <u>Ecuación 2</u>, empleada anteriormente en el sistema de lavado para el cálculo general del volumen de la tolva de alimentación, el cual se realiza con el mismo procedimiento.

La tolva de alimentación se diseñará bajo el siguiente parámetro, el volumen del cilindro de lavado de la anterior etapa, es de $0.6313~m^3$, para un 20% de llenado que se estipulo anteriormente, se tiene un volumen de $0.6313~m^3*0.2=0.12626~m^3$, el cuál es el volumen de los tubérculos de Sagú en el cilindro, esta cantidad estará lavándose en su interior durante 5 minutos, se asume que dividiendo

el cilindro en 5 partes como si cada minuto saliera por el la cantidad de $\frac{0.12626\,m^3}{5}=0.0253\,m^3$, este volumen pasaría a la etapa de rallado, por lo tanto, la cantidad introducida en la tolva se obtiene despejando la masa de tubérculos y remplazando los valores en la ecuación:

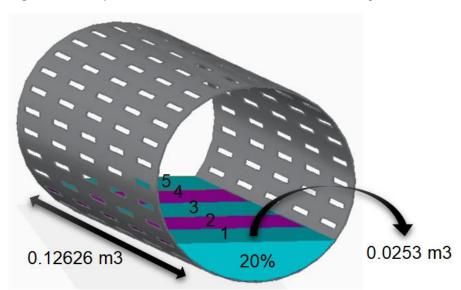


Figura 118. Proyección del volumen de los tubérculos de Sagú en el cilindro

Fuente: Elaboración propia con base en: Solid Edge ST10

$$m_{sag\acute{\mathbf{u}}} = V_T * \rho$$

$$m_{sag\acute{\mathbf{u}}} = 0.0253 \ m^3 * 363 \frac{Kg}{m^3}$$

$$m_{sag\acute{\mathbf{u}}} = 9.2 \ Kg$$

La tolva de alimentación del sistema de rallado, se diseñará para que soporte una cantidad de 20 Kg, asumiendo un valor crítico, se procede a recalcular el volumen para su próximo dimensionamiento.

$$V_T = \frac{20 \, Kg}{363 \frac{Kg}{m^3}}$$

$$V_T = 0.055 m^3$$

3.2.1.2 Ángulo de inclinación de la tolva. Para el ángulo de inclinación de la tolva de alimentación, se tomó como referencia prototipos realizados por CORPOICA⁵⁴, en donde se experimentaron con prototipos con una inclinación de tolva de 30°, 45° y 60° con respecto a la horizontal, donde no evidencian cambios relevantes en el tiempo de rallado sin la ayuda de un operario, en el material acero inoxidable, por lo tanto se tomará el ángulo de 45° para los cálculos pertinentes.

3.2.1.3 Dimensiones generales de la tolva. Se procede a calcular las dimensiones generales de la tolva de alimentación, tomando como referencia el requerimiento estipulado del volumen calculado anteriormente.

Para el volumen de $0.055 m^3$, se necesitan unas dimensiones generales de:

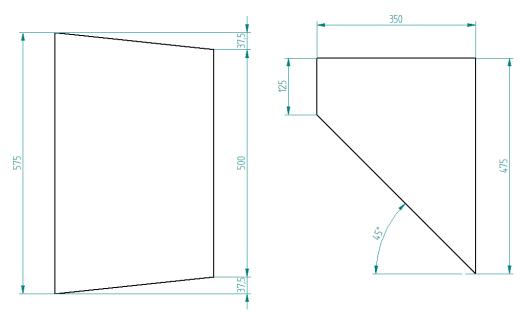


Figura 119. Dimensiones generales de la tolva de alimentación sistema de rallado

Fuente: Elaboración propia.

⁵⁴ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

Estas dimensiones se realizaron aproximando un dimensionamiento acorde para la máquina, y a su vez con el volumen solicitado.

Se empleara acero inoxidable 304 grado alimenticio, ya que el producto que será introducido en la tolva son tubérculos de Sagú, se selecciona el espesor que tendrá la lámina, el cual es calibre 12 o 2.670 mm⁵⁵ y se realizaran los respectivos cálculos, para determinar si este espesor es el adecuado.

3.2.1.4 Calculo real del volumen de la tolva. Se procede a remplazar las dimensiones establecidas en la ecuación de "volumen de un tronco pirámide irregular" ⁵⁶ Figura 49, para corroborar si estas son las indicadas para obtener el volumen requerido.

La tolva de almacenamiento del sistema de rallado contará con las mismas ecuaciones utilizadas en la tolva de almacenamiento del sistema de lavado, por lo tanto, se empleará la <u>Ecuación 4</u>, para calcular el volumen real de la tolva.

Remplazando los valores en la ecuación de obtiene:

$$V_r = \frac{0.350 \, m}{3} * \left((0.475 \, m * 0.5 \, m) + (0.125 \, m * 0.575 \, m) + \sqrt{(0.475 \, m * 0.5 \, m) * (0.125 \, m * 0.575 \, m)} \right)$$

$$V_r = 0.053 m^3$$

Con el fin de comprobar las dimensiones establecidas se utiliza el software de diseño Solid Edge, el cual genera el volumen de la tolva más exactamente.

⁵⁶ UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

⁵⁵ LA PALOMA. Tabla de calibres. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.lapaloma.com.mx/lapaloma_metales/calibres.html

Global Principales Definidas por el usuario Masa: Volumen: Area de superficie: Sistema de coordenadas: 0:000 kg 55671875,000 mm*3 974750,84 mm² Espacio modelo Centro de masa Centro de volumen Material Mostrar simbolo Mostrar simbolo x 555,37 mm X: 555,37 mm Densidad: Y: -325.00 mm Y: -325.00 mm 0.000 kg/m³ Z: -290,19 mm Z: -290,19 mm Momentos de inercia de la masa Precisión (de 0 a 1): 0 0,000 kg-m² 0.000 kg·m² 0,000 kg-m² 0.000 kg-m² 0.000 kg-m² 0.000 kg-m² Actualizar al guardar Las propiedades fisicas están actualizadas. Guardar como... Ayuda Volumen: .056 Area de la superficie:

Figura 120. Volumen de la tolva de alimentación Solid Edge

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.1.5 Calculo del área de contacto tubérculos – tolva. Para saber cuál es el valor del área de contacto que los tubérculos de Sagú ocupan sobre la tolva del sistema de rallado, se procede a calcular con <u>Ecuación 5</u>.

La altura de la inclinación se obtiene con ayuda del software Solid Edge, dando 494.97 mm es decir 0.49497 m.

37.5

Figura 121. Dimensiones generales de la pared de área de contacto de la tolva

Fuente: Elaboración propia

Remplazando los valores en la ecuación se obtiene:

$$A_c = \frac{0.575 \, m * 0.5 \, m}{2} * 0.49497 \, m$$

$$A_c = 0.071 \, m^2$$

3.2.1.6 Cálculo de la fuerza ejercida sobre la tolva. La carga de tubérculos de Sagú que están en la tolva de alimentación, generan una fuerza sobre el área de contacto anteriormente calculada, por lo tanto, se procede a utilizar la <u>Ecuación 6</u>, para calcular la fuerza correspondiente.

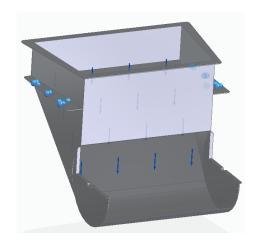
Remplazando los valores en la ecuación se obtiene:

$$Fuerza = 20 \ kg * 9.8 \ m/s^2$$

$$Fuerza = 196 \ N$$

3.2.1.7 Análisis de la tolva con el software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si la tolva de alimentación con las dimensiones y el material establecidos, soporta la carga de tubérculos de sagú anteriormente calculada, con el dimensionamiento estipulado.

Se realiza el siguiente tipo de mallado para la simulación en el software:


Figura 122. Información del tipo de malla para la respectiva simulación

Tipo de mallado	Tetraédrico
Número total de cuerpos mallados	1
Número total de elementos	54.255
Número total de nodos	108.971
Tamaño subjetivo de malla (1-10)	8

Fuente: Elaboración propia con base en: Solid Edge ST10

Se ubica la carga anteriormente calculada, y se asumen apoyos fijos en la platina de sujeción.

Figura 123. Cargas y apoyos en la tolva sistema de rallado

Fuente: Elaboración propia

3.2.1.7.1 Desplazamiento en la tolva. Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la tolva es de 0,2 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

Figura 124. Desplazamiento en la tolva sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.1.7.2 Tensión en la tolva. El esfuerzo Von Misses de la estructura esta entre 4 x 10-7 MPa a 9 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 255 MPa, indicando que el diseño de la tolva es conveniente para la carga asignada.

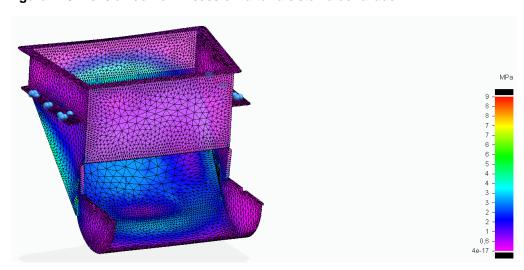
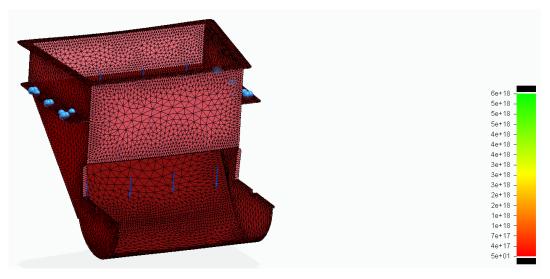



Figura 125. Tensión de Von Misses en la tolva sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.1.7.3 Factor de seguridad en la tolva. Se evidencia que el factor de seguridad mínimo es de 50 es decir que las dimensiones calculadas y estipuladas anteriormente para la tolva son las correctas.

Figura 126. Factor de seguridad en la tolva sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.2 Diseño y dimensionamiento del Cilindro rallador. El cilindro rallador cumple la función de extraer el almidón presente en los tubérculos de Sagú, rompiendo sus fibras, está compuesto por un cilindro de madera, cubierto con una lámina de acero inoxidable.

Figura 127. Cilindro de Rallado

Fuente: Elaboración propia

Indagando en distintos documentos, máquinas de la industria y visitas de campo, en especial un manual técnico realizado por CORPOICA, en el cual se estudiaron varios prototipos de máquinas ralladoras donde emplearon cilindros de rallado con las siguientes dimensiones, "25 cm de diámetro y 25 de longitud" 757, también de 30 y 40 cm de longitud, según su capacidad, en las visitas realizadas en los municipios de Cundinamarca, las máquinas tienen cilindros ralladores con dimensiones similares, para capacidades de máquinas entre 400 a 700 kg/h.

Acorde con la tolva de alimentación anteriormente diseñada y la capacidad estipulada en los parámetros de diseño de 550 Kg/h, el cilindro rallador para este sistema, tendrá el diámetro comúnmente utilizado en estas rallanderias que es de 250 mm y la longitud de 500 mm, es decir, se estipulan las siguientes dimensiones:

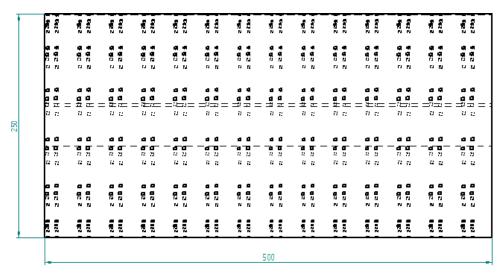
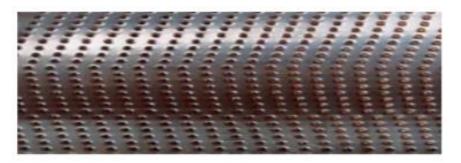


Figura 128. Dimensiones generales del Cilindro Rallador

Fuente: Elaboración propia


Según los parámetros de diseño determinados en el <u>Cuadro 5</u>, las revoluciones por minuto del cilindro de rallado deben estar en el rango de 2000 – 3000 rpm.

3.2.2.1 Lamina ralladora. El cilindro rallador, estará cubierto con una lámina de material acero inoxidable 304 grado alimenticio, ya que entra en contacto directo con los tubérculos de Sagú, basándose en el informe técnico de CORPOICA, donde

⁵⁷ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

se realizaron y analizaron varios troquelados para obtener un mejor desprendimiento de las fibras del tubérculo, se realizará el troquelado donde obtuvieron mayor "eficiencia en el rallado, el cual tiene forma de espina de pescado, con estallado de las púas en cuatro puntas, con una altura de 3 mm, mejorando el rasgado de los tejidos celulares para la liberación del almidón"58, "la distancia entre centros de las púas es de 10 mm, longitudinalmente se desplazan cada 0.7 mm por cada hilera, Estas láminas de recubrimiento del cilindro, suelen ser de calibre 22⁵⁹, por lo tanto se realizaran los cálculos pertinentes para determinar si este espesor de lámina es el indicado.

Figura 129. Troquelado óptimo de lámina ralladora

Fuente: CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en:

http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

⁵⁹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf

222

_

⁵⁸ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

3.2.2.2 Número de tubérculos a lo largo del cilindro rallador. Para saber la fuerza que determinados tubérculos de Sagú ejercen sobre el cilindro rallador, es necesario saber cuántos tubérculos pueden estar sobre él, sabiendo que el diámetro de un tubérculo de sagú aproximadamente es de 5 cm por indicaciones morfológicas que se dieron en la sección 1.1.1 y la longitud del cilindro es de 500 mm, se procede a calcular:

Ecuación 65. Número de tubérculos en el cilindro rallador

$$N_t = \frac{L_c}{D_{Sag\acute{\mathrm{u}}}}$$

Fuente: Elaboración propia

Donde:

 N_t , Numero de tubérculos de Sagú L_c , Longitud del cilindro rallador mm $D_{Sagú}$, Diámetro de un tubérculo de Sagú mm

Remplazando los valores se obtiene:

$$N_t = \frac{500 \ mm}{50 \ mm}$$

$$N_t = 10$$

3.2.2.3 Área de contacto de los tubérculos – cilindro rallador. El área de contacto que tiene el cilindro de rallado cuando se comprimen los tubérculos de Sagú, está dada, por la altura de estos y la longitud del cilindro.

La altura aproximada que tiene un tubérculo de Sagú es de 10 cm, por indicaciones morfológicas que se dieron en la sección <u>1.1.1</u>, sabiendo que la longitud del cilindro es de 500 mm, se procede a calcular el área de contacto, con la siguiente ecuación.

100 mm

Figura 130. Área de contacto de los tubérculos - cilindro rallador

Fuente: Elaboración propia

Ecuación 66. Área de contacto tubérculos - cilindro rallador

$$A_c = A * L$$

Fuente: Elaboración propia

Donde:

- ${\it A_c}$, Área de contacto de los tubérculos con el cilindro rallador m^2
- $\it A$, Altura de un tubérculo de Sagú $\it m$
- $\it L$, Longitud del cilindro de rallado $\it m$

Remplazando los valores se obtiene:

$$A_c = 0.1 \ m * 0.500 \ m$$

$$A_c = 0.050 \ m^2$$

3.2.2.4 Cálculo de la fuerza y esfuerzos sobre el cilindro rallador. El número de tubérculos de Sagú, que podrán estar sobre el cilindro rallador en el mismo instante, es de 10 tubérculos.

La fuerza necesaria para efectuar el rallado en un cilindro con dimensiones similares, según memorias de cálculo de equipos de CORPOICA, es de 98,1 N⁶⁰, la cual se comprobó a través de investigaciones y simulaciones que vencía la inercia necesaria, a continuación se calcula la fuerza total realizada por el cilindro.

Ecuación 67. Fuerza total del cilindro rallador

$$F_T = N_t * F_R$$

Fuente: AGROSAVIA

Dónde:

 F_T , Fuerza total que ejerce el cilindro rallador N

N_t, Numero de tubérculos de Sagú

 F_R , Fuerza de rallado N

Remplazando los valores se obtiene la siguiente fuerza:

$$F_T = 10 \ tub\'erculos * 98.1 \ N$$

$$F_T = 981 N$$

Sobre el cilindro de rallado actúa un esfuerzo normal, el cual se calcula con la siguiente ecuación:

Ecuación 68. Esfuerzo normal en el cilindro rallador

$$\sigma = \frac{F_T}{A}$$

Fuente: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419p. ISBN: 978-970-10- 6404-7.

⁶⁰ AGROSAVIA

Remplazando los valores se obtiene:

$$\sigma = \frac{981 \, N}{0.050 \, m^2}$$

$$\sigma = 19.62 \, \frac{N}{m^2}$$

A continuación, se procede a calcular el esfuerzo permisible, el cual para efectos del diseño tiene que ser mayor que el esfuerzo normal, empleando la siguiente ecuación:

Ecuación 69. Esfuerzo permisible

$$\sigma_{Permisible} = \frac{\delta_y}{FS}$$

Fuente: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419p. ISBN: 978-970-10- 6404-7.

Donde:

 $\sigma_{Permisible}$, Esfuerzo permisible Pa δ_y , Resistencia ultima del material Pa FS, Factor de seguridad

El material es acero inoxidable 304 el cual tiene un esfuerzo ultimo de 250 MPa y suponiendo un factor de seguridad de 1.5.

Remplazando los valores se obtiene:

$$\sigma_{Permisible} = \frac{250 \times 10^6 Pa}{1.5}$$

$$\sigma_{Permisible} = 166.6 \times 10^6 Pa = 166.6 MPa$$

Teniendo en cuenta que el esfuerzo normal debe ser menor que el permisible, se evidencia que se cumple con esta restricción.

$$\sigma \le \sigma_{Permisible}$$

$$19.62 \ Pa \le 166.6 \ x \ 10^6 \ Pa$$

El cilindro de rallado está sometido a un esfuerzo cortante torsional, donde según la teoría de falla del esfuerzo cortante máximo, la resistencia de fluencia en cortante de un material⁶¹ es:

Ecuación 70. Resistencia de fluencia en cortante

$$\delta_{a_y} = 0.50 * \delta_y$$

Fuente: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419p. ISBN: 978-970-10- 6404-7.

Donde:

 $\delta_{a_{\mathcal{N}}}$, Resistencia de fluencia en cortante del material Pa

 δ_{v} , Resistencia ultima del material Pa

Remplazando los valores se obtiene:

$$\delta_{ay} = 0.50 * 250 x 10^6 Pa$$

$$\delta_{a_y} = 125 \ x \ 10^6 \ Pa$$

Por lo tanto, asumiendo un valor de factor de seguridad de 1.5, el esfuerzo cortante torsional permisible es:

$$\tau_{Permisible} = \frac{125 \times 10^6 Pa}{1.5}$$

$$\tau_{Permisible} = 83,33 \times 10^6 Pa$$

⁶¹ BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419p. ISBN: 978-970-10- 6404-7.

Donde se procede a despejar el diámetro interior de la ecuación de esfuerzo cortante por torsión:

Ecuación 71. Esfuerzo cortante por torsión

$$\tau = \frac{T * c}{J}$$

Fuente: BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

Donde:

τ, Esfuerzo cortante por torsión Pa

T, Torque Nm

c, Distancia del eje neutro a la fibra superior externa m

J, Momento polar de inercia m^4

El torque se obtiene de la siguiente ecuación:

Ecuación 72. Torque del cilindro rallador

$$T=F_R*r$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

T, Torque Nm

 F_R , Fuerza de rallado N

r, Radio exterior del cilindro m

Remplazando los valores se obtiene:

$$T = 98.1 N * \frac{0.250 m}{2}$$

$$T = 12.3 Nm$$

El momento polar de inercia para un cilindro hueco está dado por la siguiente ecuación:

Ecuación 73. Momento polar de inercia de un cilindro hueco

$$J_{Hueco} = \frac{\pi * (D^4 - d^4)}{32}$$

Fuente: NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

Donde:

 J_{Hueco} , Momento polar de inercia en un cilindro hueco m^4

D, Diámetro exterior del cilindro m

d, Diámetro interior del cilindro m

Remplazando y despejando el diámetro interior de la <u>Ecuación 68</u>, de esfuerzo cortante por torsión, se obtiene:

$$\tau = \frac{T * c}{\frac{\pi * (D^4 - d^4)}{32}}$$

$$d = \sqrt[4]{D^4 - \left(\frac{T * c}{32 * \tau}\right)}$$

$$d = \sqrt[4]{0.250^4 - \left(\frac{12.3 Nm * 0.125}{32 * 83,33 \times 10^6 Pa}\right)}$$

$$d = 0.249 m$$

Obteniendo el valor del diámetro mínimo para la lámina del cilindro rallador, el cual se observa que el espesor requerido es de 1 mm, se comprueba que el calibre seleccionado anteriormente para la lámina en la sección <u>3.2.2.1</u>, no fallara debido al análisis de esfuerzos.

3.2.2.5 Cilindro rallador base. La base del cilindro de rallado como se especificó anteriormente en la sección <u>3.2.2</u>, es de madera, el diseño se realizara con las medidas estipuladas para el conjunto, por lo tanto, si la lámina ralladora tiene un espesor calibre 19, las dimensiones del cilindro rallador base, tendrán que ser

acorde a esta, sus dimensiones y características se encuentran en el Anexo A, Plano 20.

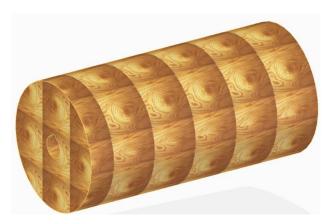


Figura 131. Base para el cilindro de rallado

Fuente: Elaboración propia

3.2.2.6 Espacio Tolva – Cilindro de rallado. La tolva de alimentación cubrirá el cilindro de rallado, por lo cual es necesario indicar cuales son los espacios que debe tener la entrada y la salida de estos, para obtener un rallado eficiente del tubérculo, y la contextura deseada a la salida.

El tubérculo de Sagú, entrara por la tolva de alimentación resbalando sobre esta, para ser rallado por el cilindro a 2300 RPM, el espacio de la entrada de la tolva y el cilindro, según investigaciones tanto documentales como de campo realizadas en municipios de Puente Quetame, debe ser aproximadamente ½ parte del tubérculo de Sagú, debe ir disminuyendo para finalmente en la salida tener un espacio aproximado de 1/5 parte del tubérculo, como se muestra en la siguiente figura.

1/2

Figura 132. Espacio entre la tolva y el cilindro rallador

Fuente: Elaboración propia

3.2.2.7 Tapa para tolva ralladora. La tapa para la tolva del sistema de rallado, tiene la función de proteger el rallado de tubérculos de Sagú, no permite que se ocasionen desperdicios del mismo y evita accidentes en el proceso, está ubicada en la parte superior del cilindro de rallado, unido por medio de tornillos a la tolva de alimentación, su material es acero inoxidable 304, ya que entra en contacto directo con el producto, sus dimensiones y características se encuentran en el Anexo A, Plano 23.

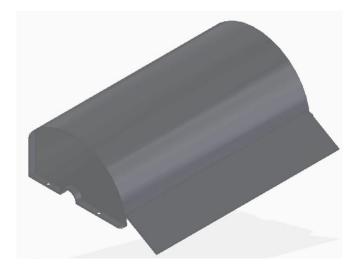


Figura 133. Tapa para tolva del sistema de rallado

Fuente: Elaboración propia

3.2.3 Sistema de transmisión de potencia.

3.2.3.1 Selección de Motor. El motor es el componente que transmite energía mecánica, a los demás elementos del sistema de rallado, por lo tanto, es necesario saber la potencia requerida por el sistema, basados en el libro Diseño de elementos de máquinas de Robert Mott, se emplea la siguiente ecuación:

Ecuación 74. Potencia

$$P = T * \omega$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

P, Potencia w

T, Torque Nm

 ω , Velocidad angular $\frac{Rad}{s}$

El torque es la fuerza que se ejerce por el rallado, sobre el cilindro, se calcula empleando la <u>Ecuación 71</u>, utilizada en cálculos anteriores para hallar el torque del cilindro de rallado.

En la sección <u>3.2.2.4</u>, se tiene una fuerza de rallado de 98,1 N, remplazando los valores se obtiene:

$$T = 98.1 N * \frac{0.250 m}{2}$$

$$T = 12.2625 Nm$$

La velocidad angular se da en Rad/s, sabiendo que las revoluciones por minuto más adecuadas para ejecutar un eficiente rallado, en máquinas con esta capacidad, se encuentran en un rango de 2000 – 3000 RPM, se estipulan según los parámetros de diseño unas RPM de 2300 para el cilindro de rallado, la velocidad angular a esta frecuencia se calcula empleando la siguiente <u>Ecuación 51</u>, de velocidad angular.

Remplazando los valores se obtiene:

$$\omega = \frac{2 * \pi * 2300 RPM}{60}$$

$$\omega = 240.8 \frac{Rad}{s}$$

Teniendo los datos para calcular la potencia, se procede a remplazar en <u>Ecuación</u> <u>73</u> y se obtiene:

$$P = 12.26 Nm * 240.8 \frac{Rad}{s}$$

$$P = 2952.2 W * \frac{1 HP}{745.7 W}$$

$$P = 3.93 HP$$

La potencia requerida es de 3.93 HP, se selecciona un motor de 4 HP con las siguientes características:

Figura 134. Especificaciones del Motor seleccionado sistema de rallado

Pote	ncia	Referencia del motor	Tamaño constructivo		Eficiencia 100%	Factor de potencia		iente nor	ninal.	Torque nominal	Da	atos de arrang	ue	Peso IN B3
Datos	elé	tricos motores Se	rie 1LE014	1 IE2 2	Polos 3	600 rpr	n							
0,75	1	1LE0141-0DA26-4AA4	80M	3450	75,5	0,81	3,2	1,85	1,6	2,1	6	2,2	3	14,0
1,1	1,5	1LE0141-0DA36-4AA4	80M	3440	82,5	0,83	4,3	2,5	2,15	3,1	7	2,8	3	16,0
1,5	2	1LE0141-0DA86-4AA4	80M	3450	84,0	0,83	5,6	3,25	2,8	4,2	7	2,8	3	18,0
2,2	3	1LE0141-0EA46-4AA4	90L	3500	85,5	0,87	7,9	4,55	3,95	6,0	8	2,8	3	28
3	4	1LE0141-0EA86-4AA4	90L	3505	87,5	0,87	10,3	6	5,1	8,2	8	2,8	3	28
3,7	5	1LE0141-1AA86-4AA4	100L	3440	87,5	0,88	12,7	7,4	6,4	10,3	8	3	3,5	40
5,5	7,5	1LE0141-1BA8G-4AA4	112M	3510	88,5	0,88	18,8	10,9	9,4	15,0	8	3	3,5	45

Fuente: SIEMENS. Catálogo de motores. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://assets.new.siemens.com/siemens/assets/api/uuid:782b04d0-82f4-488a-936b-514cd8bb5d5f/version:1580149154/arteimpresioncatalogosimotics.pdf

Se selecciona un Motor Siemens de 4 HP, referencia 1LED141-OEA86-4AA4, sus especificaciones y dimensiones detalladas se encuentran en el Anexo F.

3.2.3.2 Cálculos del sistema de transmisión de potencia. La transmisión de potencia seleccionada es mediante polea – correa, esta será la encargada de transmitir la potencia del motor al eje y al cilindro rallador.

El cilindro rallador gira a una velocidad de 2300 RPM, y el motor seleccionado de 4 HP tiene una velocidad de 3600 RPM, la transmisión de potencia seleccionada realizará una reducción de velocidad y se seleccionará posteriormente una polea motriz y conductora, que cumplan los requerimientos, para esto se trabajarán los cálculos con la potencia de diseño, empleando la siguiente <u>Ecuación 52</u>, del manual de poleas en V de Intermec, procedemos a seleccionar el factor de servicio según el tipo de maquina a diseñar.

Figura 135. Factores de servicio típicos en máquinas

TIPOS DE MÁQUINAS O EQUIPOS	SERVICIO INTERMITENTE	SERVICIO NORMAL	SERVICIO CONTINUO
Agitadores para liquidos Sopladores y aspiradoras Transportadores de trabajo ligero Ventiladores de hasta 10 caballos de fuerza	1.1	1.2	1.3
Transportadores de banda para arena, grano, etc Bombas rotativas de desplazamiento positivo Máquinas herramientas Maquinaria de lavanderia Mezcladores de masa Ejes de linea Generadores Maquinaria de imprenta Taladros-prensas-cortadores Cribas giratorias y vibratorias Ventiladores de mas de 10 caballos de fuerza	1.2	1.3	1.4
Maquinaria para aserrios y trabajos en madera Transportadores (arrastre o tornillo) Compresores de pistón Molinos de martillo Pulverizadores Excitadores Maquinaria textill Bombas de pistón Elevadores cangilones Maquinaria para ladrillos Sopladores de desplazamiento positivo	1.4	1.5	1.6
Trituradoras (giratorias-mandibula-rodillo) Extrusoras-molinos de caucho Molinos de bolas Malacates	1,5	1.6	1.8

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Remplazando los valores en la Ecuación 52, se obtiene:

$$P_d = 4 HP * 1.5$$

$$P_d = 6 HP$$

El perfil de la correa deseada se selecciona a partir de la potencia de diseño y las revoluciones por minuto del motor, a través de la siguiente figura.

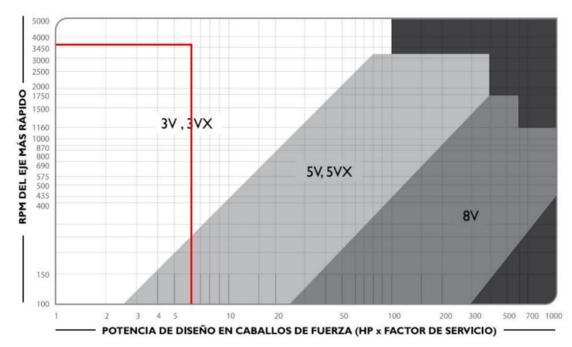


Figura 136. Perfil de correas de alta capacidad

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

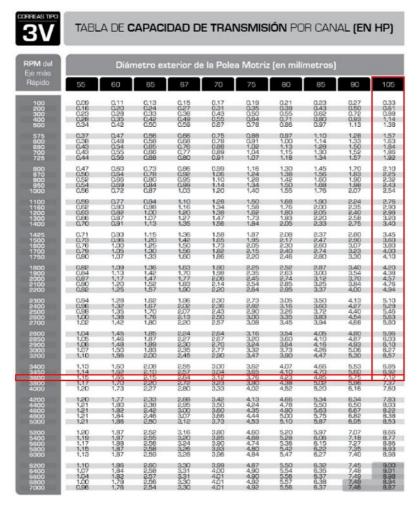
Para las revoluciones por minuto del motor y acorde a la potencia de diseño establecida, se selecciona un perfil de correa de 3V.

La relación de velocidades con respecto a las revoluciones por minuto del motor y las revoluciones por minuto del cilindro rallador, se obtiene empleando la siguiente ecuación:

Ecuación 75. Relación de velocidades RPM

$$Relación = \frac{RPM Motor}{RPM Equipo}$$

Fuente: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec


Remplazando los valores se obtiene:

$$Relación = \frac{3600 RPM}{2300 RPM}$$

$$Relación = 1.57$$

Con la relación de velocidades calculada se procede a seleccionar la polea motriz del sistema, teniendo en cuenta las RPM del motor seleccionado y que satisfaga la potencia de diseño, empleando la siguiente tabla.

Tabla 12. Capacidad de transmisión por canal 3V

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

La polea motriz que satisface la potencia requerida de diseño es de diámetro exterior de 105 mm, para saber cuántos canales requiere esta polea se emplea la siguiente ecuación:

Ecuación 76. Número de canales

$$N = \frac{P_d}{D_{P_{Motriz}}}$$

Fuente: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Donde:

N, Numero de canales

 P_d , Potencia de diseño HP

 $D_{P_{Motriz}}$, Diámetro de la polea motriz seleccionada mm

Remplazando los valores se obtiene:

$$N = \frac{6 HP}{105 mm}$$

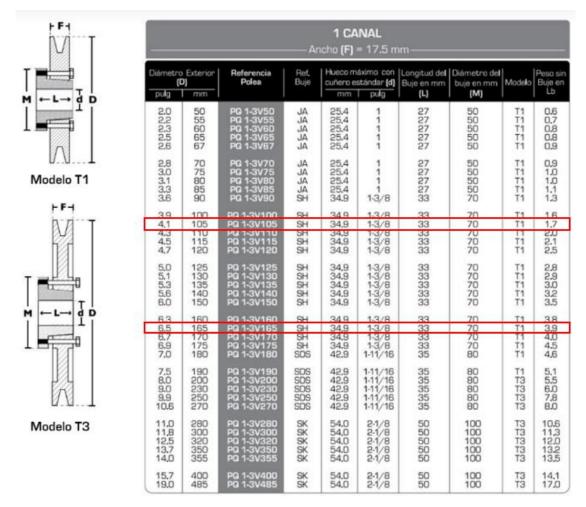
$$N = 0.06$$

La polea motriz se selecciona con un diámetro exterior de 105 mm y un canal en V.

A continuación, se calcula el diámetro de la polea conducida, teniendo en cuenta la relación de velocidad anteriormente calculada del motor y el cilindro de rallado, empleando la siguiente ecuación:

Ecuación 77. Relación de velocidades angulares

$$Relación = \frac{D_{p_{Conducida}}}{D_{P_{Motriz}}}$$


Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

$$D_{p_{Conducida}} = D_{P_{Motriz}} * Relación$$

$$D_{p_{Conducida}} = 105 \ mm * 1.57$$
 $D_{p_{Conducida}} = 164.8 \ mm$

Una vez conocido el diámetro requerido de la polea conducida para que se cumpla la relación de velocidades, se procede a seleccionar los diámetros comerciales para ambas poleas, empleando la siguiente figura:

Figura 137. Dimensiones de poleas comerciales 3V

Fuente: Elaboración propia con base en: INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

Se seleccionó una polea motriz de referencia PQ 1-3V105 y una polea conducida de referencia PQ 1-3V165.

Se procede a realizar el mismo procedimiento del diseño de transmisión de potencia del sistema de lavado, ya que para el diseño del sistema de rallado también se empleara el "manual de poleas de Intermec" forma la secuaciones pertinentes, a continuación se calcula la distancia entre centros recomendada a partir de la Ecuación 54.

Remplazando los valores se obtiene:

$$C = 1.5 * (165 mm + 105 mm)$$

$$C = 405 mm$$

Donde se cumple con el intervalo de distancias nominales entre centros, el cual se especifica en la <u>Ecuación 55.</u>

A continuación, se calcula la longitud de la correa empleando la <u>Ecuación 56</u>, de longitud de paso.

Remplazando los valores se obtiene:

$$L = 2 * 405 mm + 1,57 * (165 mm + 105 mm) + \frac{(165 mm + 105 mm)^{2}}{4 * 405 mm}$$

$$L = 1279 mm$$

Ahora se procede a re calcular la distancia entre centros real, empleando la <u>Ecuación 57</u>, de distancia entre centros de poleas.

Donde:

$$B = 4 * L - 6.28 * (D_{p_C} - D_{P_M})$$

Remplazando los valores se obtiene:

⁶² INTERMEC. Manual de poleas en V. [en línea]. [consultado el 9 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

$$B = 4 * 1279 mm - 6.28 * (165 mm - 105 mm)$$

$$B = 4739.2 mm$$

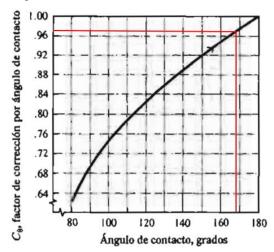
$$C = \frac{4739.2 mm + \sqrt{4739.2 mm^2 - 32 * (165 mm - 105 mm)^2}}{16}$$

$$C = 592 mm$$

Se procede a calcular el ángulo de contacto de la banda en cada polea, empleando la Ecuación 58.

Remplazando los valores en la ecuación se obtiene:

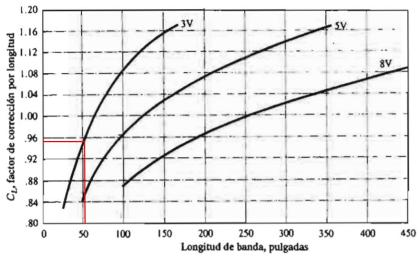
$$\theta_1 = 180^\circ - 2 * \sin^{-1} \left(\frac{(165 \, mm - 105 \, mm)}{592 \, mm} \right)$$


$$\theta_1 = 168^\circ$$

Con el ángulo de contacto de la banda en cada polea, se procede a calcular la cantidad de bandas necesarias para el sistema, teniendo en cuenta la potencia de diseño, empleando la Ecuación 59, de número de bandas.

La potencia corregida se determina con factores de corrección con respecto al ángulo de contacto de la banda en cada polea y la longitud de la banda, empleando la Ecuación 60.

Estos factores se determinan utilizando las siguientes figuras.


Figura 138. Factor de corrección por ángulo de contacto

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

El factor de corrección por el ángulo de contacto de la banda con cada polea obtenido es de 0.97.

Figura 139. Factor de corrección por longitud de banda

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

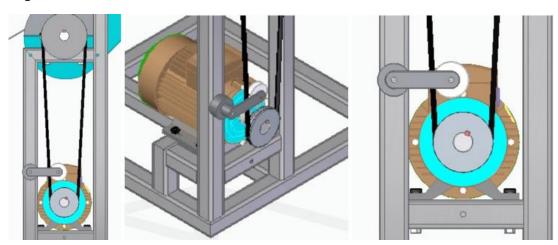
El factor de corrección por longitud de la banda obtenido es de 0.95.

Se procede a remplazar estos valores en la <u>Ecuación 60</u>, de potencia corregida y se obtiene:

$$P_c = 0.97 * 0.95 * 6 HP$$

$$P_c = 5.5 HP$$

Teniendo la potencia corregida, se procede a calcular el número de bandas, empleando la <u>Ecuación 59</u>, remplazando los valores se obtiene:


$$N = \frac{6 HP}{5.5 HP}$$

$$N = 1.01$$

El sistema de transmisión de potencia de polea - correa, funcionará con una banda o correa en V.

3.2.3.2.1 Tensión de la correa. Se contará con un sistema de tensión de la correa por rodillo tensor, el cual se encargará de tensionarla cuando se requiera, para obtener una transmisión de potencia más efectiva, está compuesto un brazo rotativo el cual tiene un rodillo, este se unirá a la estructura por medio de un tornillo, encargándose de ajustar la tensión deseada para el sistema, a continuación, se muestra una imagen.

Figura 140. Vistas del rodillo tensor de la ralladora

Fuente: Elaboración propia

Es importante tener en cuenta que una tensión muy alta en la correa puede causar un exceso de fricción y cargas en los rodamientos y una tensión muy baja puede causar deslizamiento, perjudicando la transmisión de potencia.

Se empleara el mismo procedimiento de la sección <u>3.1.11.4</u>, utilizado para calcular la longitud del tramo medio de la correa, a partir de la <u>Ecuación 62</u>, remplazando los valores calculados anteriormente en la sección <u>3.2.3.2</u>, se obtiene el siguiente valor para el tramo medio de la correa:

$$L_t = \sqrt{(592 \text{ mm})^2 + \left(\frac{165 \text{ mm} - 105 \text{ mm}}{2}\right)^2}$$

$$L_t = 593 \text{ mm}$$

La deflexión que se debe obtener debe cumplir con lo siguiente:

Deflexión 0.02 mm por mm de largo si $L_t < 500 \ mm$

Deflexión 0.01 mm por mm de largo si $L_t > 500 \ mm$

Como se evidencia la longitud del tramo medio de la correa es mayor a 500 mm, por lo tanto, la deflexión debe ser de 0.01 mm por mm de largo, es decir 5.93 mm de deflexión, a partir de la siguiente figura basándose en el manual de correas de Intermec, se conocerá la fuerza que se debe aplicar en las correas tipo 3V.

Figura 141. Fuerza de deflexión en correas

Perfil Correo	Diam. Polea	Fuerza inicial	Fuerza de funcionamiento Fo** [N]	Tamaño SE (excepto SE-W y SE-B)							
	menor [mm]	F1**[N]		1 correa	2 correa	3 correas	4 correas	5 correas			
Z	56-100			SE 11	SE 11	SE 11	SE 15	SE 15			
A	80-140	10 - 15		SE 11	SE 15	SE 18	SE 18	SE 18			
В	125-200	20	20 - 30		SE 18	SE 18	SE 27	SE 27			
(200-400	40	- 60	SE 18	SE 27	SE 27	SE 38	SE 38			
D	355-600	70	- 105	SE 18	SE 27	SE 38	SE 38	SE 45			
	68-85	25	21	SE 11	SE 18	SE 18	SE 18	SE 18			
	93-104	28	24	SE 11	SE 18	SE 18	SE 18	SE 27			
3V	115-142	33	28	SE 15	SE 18	SE 18	SE 18	SE 27			
	152-270	38	32	SE 15	SE 18	SE 18	SE 27	SE 27			
	180-215	71	60	SE 18	SE 18	SE 27	SE 27	SE 38			
5V	228-299	80	69	SE 18	SE 27	SE 27	SE 38	SE 38			
24	317-406	93	78	SE 18	SE 27	SE 38	SE 38	SE 38			
1000	317-431	182	150	SE 27	SE 38	SE 45	SE 45	SE 50			
8V	457-569	213	175	SE 27	SE 38	SE 45	SE 45	SE 50			
	56-71	20	16	SE 11	SE 18	SE 18	SE 18	SE 18			
	75-90	22	18	SE 11	SE 18	SE 18	SE 18	SE 27			
SPZ	95-125	25	20	SE 15	SE 18	SE 18	SE 18	SE 27			
	≥ 125	28	22	SE 15	SE 18	SE 18	SE 27	SE 27			
	80-100	28	22	SE 15	SE 18	SE 18	SE 27	SE 27			
	106-140	38	30	SE 15	SE 18	SE 27	SE 27	SE 27			
SPA	150-200	45	36	SE 18	SE 18	SE 27	SE 27	SE 27			
	≥ 200	50	40	SE 18	SE 18	SE 27	SE 27	SE 38			
	112-160	50	40	SE 18	SE 18	SE 27	SE 27	SE 38			
	170-224	62	50	SE 18	SE 18	SE 27	SE 27	SE 38			
SPB	236-355	77	62	SE 18	SE 27	SE 38	SE 38	SE 38			
	≥ 355	81	65	SE 18	SE 27	SE 38	SE 38	SE 38			
	224-250	87	70	SE 18	SE 27	SE 38	SE 38	SE 38			
SPC	265-355	115	92	SE 27	SE 38	SE 38	SE 45	SE 45			
SPC	≥ 355	144	115	SE 27	SE 38	SE 38	SE 45	SE 45			

Fuente: INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf

La fuerza de tensión recomendada de la correa es de 33 N, y su deflexión es de 5.93 mm mínima, por lo tanto, se procede a seleccionar el rodillo tensor que cumpla con estos requerimientos.

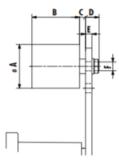
Como se explicó anteriormente este sistema de rodillo tensor, está compuesto por un brazo rotativo (Tensor) y un rodillo, a partir de las siguientes figuras y teniendo en cuenta la fuerza de tensado y el tamaño obtenido por la anterior figura, se selecciona el brazo rotativo.

Figura 142. Brazo rotativo estándar para tensión de correas

Identificación	Características	Características Temperatura de funcionamiento Detalles Foto			Foto
SE Estándar	Acabado lacado azul. Calidad de la goma Rubmix 10.		– 40 ° a + 80 ° C	Página 6	

Fuente: INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf

Figura 143. Brazo rotativo estándar seleccionado


Tamaño SE	Pretensión	ı «± 10	Pretensión	1 ≪ 20	Pretensión 🔫 30		
Iamano SE	F [N]	s [mm]	F [N]	s [mm]	F [N]	s [mm]	
- 11	15	14	40	27	80	40	
15	25	17	65	34	135	50	
18	75	17	185	34	350	50	
27	150	23	380	44	810	65	
38	280	30	720	60	1500	88	
45	520	39	1350	77	2650	113	
50	740	43	2150	86	4200	125	

Fuente: INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf

Se selecciona un tensor SE 15, las especificaciones y características se encuentran en el Anexo G.

Se procede a seleccionar el rodillo tensor teniendo en cuenta el brazo rotativo seleccionado anteriormente, a partir de la siguiente figura:

Figura 144. Rodillo tenor seleccionado

Rodillo tensor R estándar (Nylon)

Tipo	Velocidad máxima[rpm]	Ancho de correa máx.	A	В	c	D	E máx.	F	Par de apriete [Nm]	Tamaño SE	Peso [kg]
R 11	8000	30	30	35	2	14	5	M8	25	11	0.08
R 15/18	8000	40	40	45	6	16	7	M10	20	15/18	0.17
R 27	6000	55	60	60	8	17	8	M12	35	27	0.40
R 38	5000	85	80	90	8	25	10	M20	165	38	1.15
R 45	4500	130	90	135	10	27	12	M20	165	45	1.75

Fuente: INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf

Se selecciona un tensor R 15.

Verificar la tensión cada 15 o 20 días aproximadamente es importante para obtener una transmisión eficiente, si la fuerza de tensión de la correa se encuentra por debajo a la anteriormente determinada, se encuentra baja de tensión, mientras que si la fuerza está por encima se encuentra sobre tensionada.

3.2.3.2.2 Guarda correa ralladora. La guarda correa es la encargada de impedir el acceso a la zona de la correa, la cual estará en constante movimiento de rotación, evitando accidentes laborales y protegiendo a su vez los componentes de la máquina, para un correcto funcionamiento, sus dimensiones y características se encuentran en el Anexo A, plano 47.

Figura 145. Guarda correa

Fuente: Elaboración propia

3.2.3.3 Cálculos del eje del sistema de rallado.

Figura 146. Eje del sistema de rallado

Fuente: Elaboración propia

Para realizar un diseño adecuado del eje, es necesario calcular las fuerzas que los elementos generan sobre este, se determina el par torsional que debe transmitir el eje con la siguiente ecuación:

Ecuación 78. Par torsional

$$T = \frac{63000 * P}{n}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p.

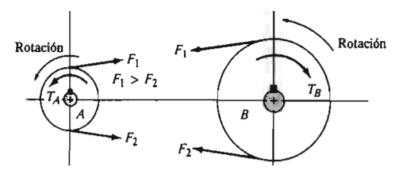
ISBN: 9688805750

Donde:

T, Torque o par torsional Lb * in

P, Potencia HP

n, Revoluciones por minuto del eje RPM


El cilindro rallador al estar sobre el eje, tendrán las mismas revoluciones por minuto, siendo este valor de 2300 RPM, la potencia de entrada anteriormente calculada es de 4 HP, remplazando los valores en la ecuación se obtiene:

$$T = \frac{63000 * 4 HP}{2300 RPM}$$

$$T = 109.56 Lb * in$$

El elemento que ejerce fuerza sobre el eje es la polea conducida, generando dos fuerzas como se observa:

Figura 147. Fuerzas sobre poleas

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde la fuerza impulsadora neta se calcula a partir de las siguientes ecuaciones:

Ecuación 79. Fuerza impulsadora neta

$$F_N = F_1 - F_2$$

$$F_N = \frac{T}{\frac{D_{p_C}}{2}}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

 F_1 , Fuerza en el lado tenso Lb

 F_2 , Fuerza en el lado flojo Lb

T, Torque o par torsional Lb * in

 D_{p_c} , Diámetro exterior de la polea conducida in

Como se tiene el par torsional se procede a remplazar los valores y se obtiene:

$$F_N = \frac{109.56 \, Lb * in}{\frac{165 \, mm * \frac{1 \, in}{25.4 \, mm}}{2}}$$

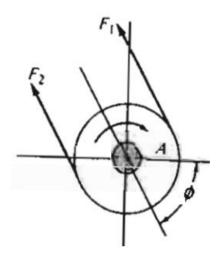
$$F_N=33.73\,Lb$$

La fuerza flexionante sobre el eje se calcula con la siguiente ecuación:

Ecuación 80. Fuerza flexionante

$$F_B = 1.5 * F_N$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

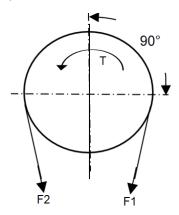

Donde:

 F_B , Fuerza flexionante Lb

 F_N , Fuerza impulsora neta Lb

Dependiendo del ángulo de inclinación del lado tenso con respecto al eje X, la fuerza flexionante tiene componentes:

Figura 148. Componentes de la fuerza en la polea


Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

$$F_{Bx} = F_B * \cos \theta$$

$$F_{By} = F_B * \operatorname{sen} \theta$$

La ubicación de la polea conducida en el sistema de rallado será la siguiente:

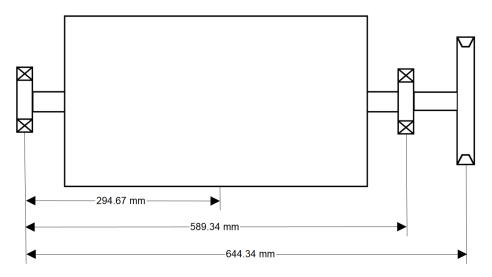
Figura 149. Componentes de la polea del sistema de rallado

Fuente: Elaboración propia

Por lo tanto, se procede a calcular las componentes de la fuerza flexionante, remplazando los valores se obtiene:

$$F_{B} = 1.5 * 33.73 Lb$$
 $F_{B} = 50.6 Lb$
 $F_{Bx} = 50.6 Lb * \cos 90^{\circ}$
 $F_{Bx} = 0 Lb$
 $F_{By} = 50.6 Lb * sen 90^{\circ}$
 $F_{By} = 50.6 Lb$

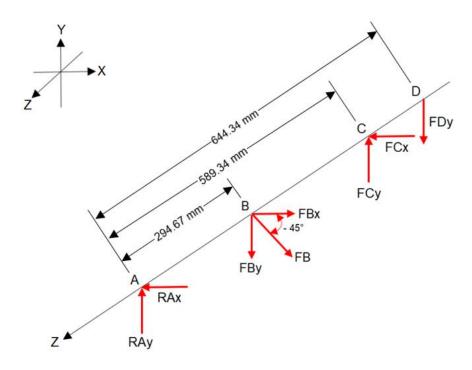
3.2.3.4 Diseño del eje del sistema de rallado. Se selecciona un acero AISI 1040 como material para el eje que transmite la potencia al cilindro de rallado, ya que cuenta con propiedades adecuadas para el diseño, las principales características de este material son las siguientes:


Tabla 13. Propiedades del acero AISI 1040

Designación del material			stencia ensión		stencia uencia	Ductilidad (porcentaje de elongación en 2 pulgadas)	Dureza Brinell (HB)
(Número AISI)	Condición	(ksi)	(MPa)	(ksi)	(MPa)		
1040	Estirado en frío	80	552	71	490	12	160

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

La longitud del eje se estima teniendo en cuenta la longitud del cilindro de rallado, el ancho de la polea conducida y los rodamientos que se encontraran sobre este, teniendo la siguiente distribución y longitud:


Figura 150. Distribución de elementos sobre el eje y longitudes

Fuente: Elaboración propia

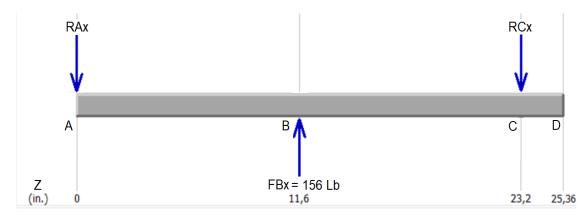
Se procede a realizar el diagrama de cuerpo libre de las fuerzas que actúan sobre el eje.

Figura 151. Diagrama de cuerpo libre del eje del sistema de rallado

Fuente: Elaboración propia

Como se observa, la fuerza que ejerce el cilindro de rallado, es la fuerza total empleada para rallar los tubérculos en un mismo instante a lo largo del cilindro, la cual se calculó anteriormente teniendo un valor de $F_T=981\ N$, esa fuerza se asume en el centro de área como una fuerza puntual, la cual tiene componentes en el eje X y Y debido a que se asume como una fuerza perpendicular a la pared de la tolva la cual tiene una inclinación de 45°, se procede a calcular dichas componentes, empleando las ecuaciones de las componentes de la fuerza.

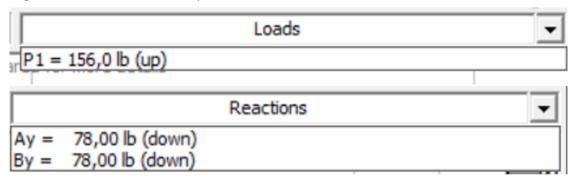
$$F_{T} = F_{B} = 981 N$$
 $F_{Bx} = F_{T} * \cos(-45^{\circ})$
 $F_{Bx} = 981 N * \cos(-45^{\circ})$
 $F_{Bx} = 694 N$
 $F_{By} = F_{T} * sen (-45^{\circ})$
 $F_{By} = 981 N * sen (-45^{\circ})$
 $F_{By} = -694 N$


La fuerza flexionante de la polea conducida tiene componentes anteriormente calculas, observando que solamente su fuerza en Y tiene una magnitud.

$$F_{By} = F_{Cy} = 50.6 Lb$$

A continuación, se analiza el eje por planos bidimensionales.

PLANO X - Z


Figura 152. Diagrama de cuerpo libre del eje plano X-Z

Fuente: Elaboración propia con base en: MDSolids 4.0

Empleando el software MDSolids, se calculan las reacciones de X en los rodamientos y se procede a realizar el diagrama de fuerza cortante y momento flector:

Figura 153. Reacciones en el eje X en los rodamientos

Fuente: Elaboración propia con base en: MDSolids 4.0

Dando como resultado Los siguientes valores para las reacciones:

$$R_{Ax} = 78 LB$$

$$R_{Cx} = 78 LB$$

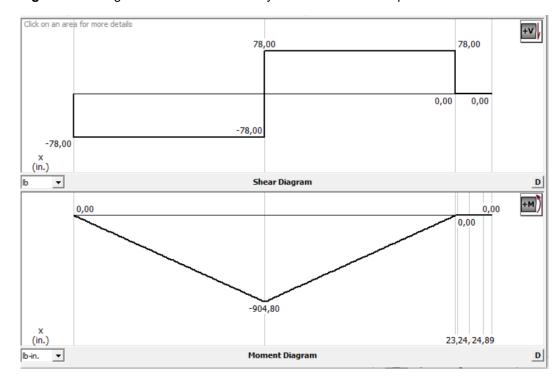
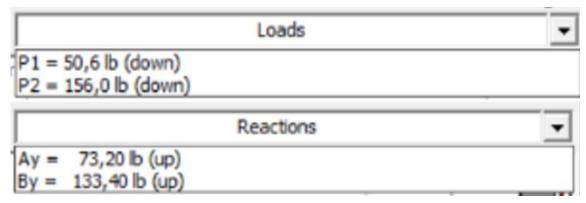


Figura 154. Diagrama de fuerza cortante y momento flector del plano X-Z

Fuente: Elaboración propia con base en: MDSolids 4.0

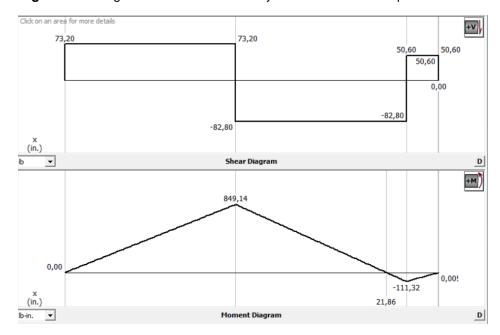
PLANO Y - Z


Figura 155. Diagrama de cuerpo libre del eje plano Y-Z

Fuente: Elaboración propia con base en: MDSolids 4.0

Empleando el software MDSolids, se calculan las reacciones de Y en los rodamientos y se procede a realizar el diagrama de fuerza cortante y momento flector:

Figura 156. Reacciones en el eje Y en los rodamientos


Fuente: Elaboración propia con base en: MDSolids 4.0

Dando como resultado Los siguientes valores para las reacciones:

$$R_{Ay} = 73,2 LB$$

$$R_{Cy} = 133,4 LB$$

Figura 157. Diagrama de fuerza cortante y momento flector del plano Y-Z

Fuente: Elaboración propia con base en: MDSolids 4.0

Una vez calculadas las reacciones en los rodamientos, y los momentos flectores en el eje, se procede a analizar cada sección donde se encuentra un elemento, para determinar el diámetro mínimo requerido y de esta forma garantizar que el eje no falle en dichos puntos, cuando se presenta un cambio de diámetro en el eje existe una concentración de esfuerzos⁶³.

El eje se diseñará para la teoría de ejes sometidos a flexión y a torsión, en donde el diámetro mínimo requerido del eje para que no falle, se determina con la siguiente ecuación de diseño:

Ecuación 81. Diseño de ejes

$$D = \left[\frac{32 * N}{\pi} \sqrt{\left[\frac{K_t * M}{\delta'_n} \right]^2 + \frac{3}{4} \left[\frac{T}{\delta_y} \right]^2} \right]^{\frac{1}{3}}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

D, Diámetro del eje in

N, Factor de diseño

 K_t , Factores de concentración de esfuerzos

M, Momento máximo flector Lb * in

 δ'_n , Resistencia a la fatiga real estimada Pi

T, Torque Lb * in

 δ_y , Resistencia de fluencia del material Psi

"El factor de diseño se asume N=2, ya que se usa usualmente para el diseño de ejes" 64 .

Los factores de concentración K_t , son para reducir la concentración de esfuerzos que se presentan en los cambios de geometrías en ejes, por lo tanto se asignan valores preliminares para distintos tipos de discontinuidades geométricas⁶⁵, especificando las que se emplearan en el diseño del eje del sistema de rallado:

65 lbíd., p. 540.

⁶³ MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

⁶⁴ lbíd., p. 546.

Cuña de trineo: $K_t = 1.6$ Chaflán agudo: $K_t = 2.5$

Chaflán bien redondeado: $K_t = 1.5$

Los momentos máximos flectores M, se obtienen de los diagramas de momento flectores anteriormente realizados.

La resistencia a la fatiga real estimada, se calcula empleando la siguiente ecuación:

Ecuación 82. Resistencia a la fatiga real estimada

$$\delta'_n = \delta_n * C_m * C_{st} * C_R * C_s$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Dónde:

 δ'_n , Resistencia a la fatiga real estimada Ksi

 δ_n , Resistencia a la fatiga modificada Ksi

 C_m , Factor de material

 C_{st} , Factor de tipo de esfuerzo

 C_R , Factor de confiabilidad

 C_s , Factor de tamaño

La resistencia a la fatiga modificada se determina con respecto al tipo de material seleccionado anteriormente empleando la siguiente figura:

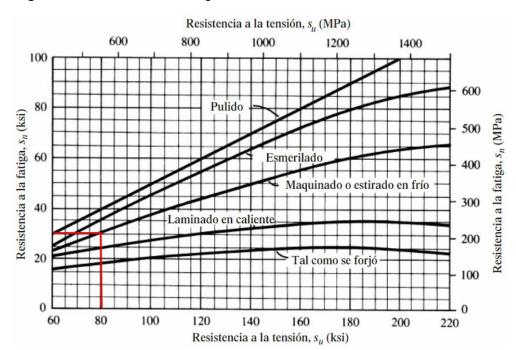


Figura 158. Resistencia a la fatiga en función de la resistencia a la tensión

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Obteniendo como resultado $\delta_n=30~Ksi$

El factor del material para un acero forjado se tiene un $C_m=1$

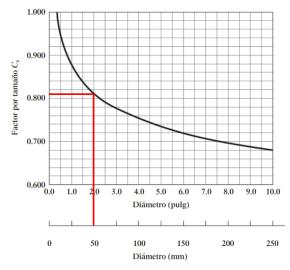
El factor de tipo de esfuerzo para un esfuerzo flexionante se tiene un $C_{st}=1$

El factor de confiabilidad se estima con respecto a una confiabilidad deseada en el diseño del eje, empleando la siguiente tabla.

Tabla 14. Factores de confiabilidad

Factores de confiabilidad aproximados C_R

Confiabilidad des	eada C_R
0.50	1.0
0.90	0.90
0.99	0.81
0.999	0.75


Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006.

950 p. ISBN: 9688805750

Obteniendo un valor $C_R = 0.81$

El factor de tamaño se estima asumiendo que el diámetro del eje no excederá los 50 mm en su diseño, empleando la siguiente Figura.

Figura 159. Factor por tamaño

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Obteniendo un valor $C_s = 0.81$

Teniendo los valores se procede a remplazar en la <u>Ecuación 81</u>, de resistencia a la fatiga real estimada y se obtiene:

$$\delta'_n = 30 \ Ksi * 1 * 1 * 0.81 * 0.81$$
 $\delta'_n = 19.68 \ Ksi$ $\delta'_n = 19680 \ Psi$

Los torques, se obtiene del torque de la polea y el cilindro anteriormente calculados.

La resistencia de fluencia del material seleccionado es $\delta_{\nu}=71~Ksi$

Los diámetros mínimos requeridos en el eje del sistema de rallado, se determinarán por secciones, donde se ubique un elemento sobre él.

PUNTO A

En el punto A esta ubicado un rodamiento, como se observa en la <u>Figura 151</u>, según los diagramas el momento flector en ese punto es cero, por lo tanto, se asume que tiene el mismo torque de la polea ubicada en el otro extremo del eje, el cual tiene un valor de $109.56 \, Lb * in$, el rodamiento estará reposando en un chaflán agudo teniendo un factor de concentración de esfuerzos de $K_t = 2.5$, remplazando los valores en la <u>Ecuación 80</u>, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\frac{3}{4} \left[\frac{109.56 Lb * in}{71000 \frac{Lb}{in^2}} \right]^2} \right]^{\frac{1}{3}}$$

$$D_A = 0.3 in$$

$$D_A = 7.62 mm$$

PUNTO B

En el punto B está ubicado el cilindro rallador, como se observa en la <u>Figura 151</u>, según los diagramas el momento flector en ese punto es:

$$M_B = \sqrt{M_{Bx}^2 + M_{By}^2}$$

$$M_B = \sqrt{(904.80 Lb * in)^2 + (849.14 Lb * in)^2}$$

$$M_B = 1240.85 Lb * in$$

El torque del cilindro tiene un valor de 108.5 Lb * in

Punto B a la izquierda:

A la izquierda estará montado al eje sobre una cuña de trineo teniendo un factor de concentración de esfuerzos de $K_t = 1.6$, remplazando los valores en la Ecuación 80, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\left[\frac{1.6 * 1240.85 Lb * in}{19680 \frac{Lb}{in^2}} \right]^2 + \frac{3}{4} \left[\frac{108.5 Lb * in}{71000 \frac{Lb}{in^2}} \right]^2} \right]^{\frac{1}{3}}$$

$$D_{Biz} = 1.27 in$$

$$D_{Biz} = 32.3 mm$$

Punto B a la derecha:

A la derecha estará montado al eje sobre una cuña de trineo teniendo un factor de concentración de esfuerzos de $K_t = 1.6$, remplazando los valores en la Ecuación 80, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\left[\frac{1.6 * 1240.85 Lb * in}{19680 \frac{Lb}{in^2}} \right]^2 + \frac{3}{4} \left[\frac{108.5 Lb * in}{71000 \frac{Lb}{in^2}} \right]^2} \right]^{\frac{1}{3}}$$

$$D_{Bde} = 1.27 in$$

$$D_{Bde} = 32.3 \, mm$$

PUNTO C

En el punto C está ubicado un rodamiento, como se observa en la <u>Figura 151</u>, según los diagramas el momento flector en ese punto es:

$$M_c = \sqrt{M_{cx}^2 + M_{cy}^2}$$

$$M_c = \sqrt{(0 Lb * in)^2 + (111.32 Lb * in)^2}$$

$$M_c = 111.32 Lb * in$$

El torque del rodamiento se asume igual al de la polea ubicada en el punto D, el cual tiene un valor de $109.56 \, Lb * in$.

Punto C a la izquierda:

A la izquierda el rodamiento estará reposando en un chaflán agudo teniendo un factor de concentración de esfuerzos de $K_t = 2.5$, remplazando los valores en la Ecuación 80, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\left[\frac{2.5 * 109.56 Lb * in}{19680 \frac{Lb}{in^2}} \right]^2 + \frac{3}{4} \left[\frac{111.32 Lb * in}{71000 \frac{Lb}{in^2}} \right]^2} \right]^{\frac{1}{3}}$$

$$D_{Ciz} = 0.66 in$$

$$D_{Ciz} = 16.8 mm$$

Punto C a la derecha:

A la derecha el rodamiento estará reposando en chaflán bien redondeado teniendo un factor de concentración de esfuerzos de $K_t = 1.5$, remplazando los valores en la Ecuación 80, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\left[\frac{1.5 * 109.56 Lb * in}{19680 \frac{Lb}{in^2}} \right]^2 + \frac{3}{4} \left[\frac{111.32 Lb * in}{71000 \frac{Lb}{in^2}} \right]^2} \right]^{\frac{1}{3}}$$

$$D_{Cde}=0.56\ in$$

$$D_{Cde} = 14.3 \ mm$$

PUNTO D

En el punto D está ubicada una polea, como se observa en la <u>Figura 151</u>, según los diagramas el momento flector en ese punto es cero, por lo tanto, su torque tiene un valor de $109.56 \ Lb * in$, la polea estará montada sobre el eje y en medio de estos dos elemento una cuña de trineo que los hará solidarios, la cual tiene un factor de concentración de esfuerzos de $K_t = 1.6$, remplazando los valores en la <u>Ecuación</u> 80, del diámetro mínimo requerido, se obtiene:

$$D = \left[\frac{32 * 2}{\pi} \sqrt{\frac{3}{4} \left[\frac{109.56 Lb * in}{71000 \frac{Lb}{in^2}} \right]^{\frac{1}{3}}} \right]$$

$$D_D = 0.3 in$$

$$D_D = 7.62 mm$$

A continuación, se muestran los diámetros mínimos requeridos en el eje y los estipulados en el diseño teniendo en cuenta diámetros normalizados y que sean de un tamaño superior al requerido con el fin de que no fallen, estos diámetros estarán acorde al sistema de rallado:

Tabla 15. Diámetros en cada punto del eje del sistema de rallado

PUNTO	DIAMETRO REQUERIDO (in)	DIAMETRO REQUERIDO (mm)	DIAMETRO DEL EJE (mm)
Punto A	$D_A = 0.3 in$	$D_A = 7.62 mm$	$D_A = 1.6 in$
Punto B izquierda	$D_{Biz}=1.27\ in$	$D_{Biz}=32.3\ mm$	$D_{Biz}=1.77\ in$
Punto B derecha	$D_{Bde}=1.27 in$	$D_{Bde} = 32.3 mm$	$D_{Bde}=1.77 in$
Punto C izquierda	$D_{Ciz}=0.66\ in$	$D_{Ciz} = 16.8 mm$	$D_{Ciz} = 1.6 in$
Punto C derecha	$D_{Cde} = 0.56 in$	$D_{Cde} = 14.3 mm$	$D_{Cde} = 1.6 in$
Punto D	$D_D=0.3 in$	$D_D = 7.62 \ mm$	$D_D = 1\frac{3}{8} in$

Fuente: Elaboración propia

3.2.3.5 Selección de cuñas o chavetas. Una vez estipulados los diámetros reales del eje, se procede a seleccionar las cuñas para la polea y el cilindro de rallado.

En la siguiente figura se muestran tamaños de cuñas para diferentes diámetros de ejes:

Tabla 16. Tamaño de cuñas

Tamaño no	ominal del eje	Tamaño nominal de la cuña				
			Altura, H			
Más de	Hasta (incl.)	Ancho, W	Cuadrada	Rectangular		
5/16	7/16	3/32	3/32			
7/16	9/16	1/8	1/8	3/32		
9/16	7/8	3/16	3/16	1/8		
7/8	$1^{\frac{1}{4}}$	1/4	1/4	3/16		
$1\frac{1}{4}$	$1\frac{3}{8}$	5/16	5/16	1/4		
$1\frac{3}{8}$	$1^{\frac{3}{4}}$	3/8	3/8	1/4		
$1\frac{3}{4}$	$2^{\frac{1}{4}}$	1/2	1/2	3/8		
$2^{\frac{1}{4}}$	$2^{\frac{3}{4}}$	5/8	5/8	7/16		
$2\frac{3}{4}$	$3\frac{1}{4}$	3/4	3/4	1/2		
$ \begin{array}{c} 2^{\frac{1}{4}} \\ 2^{\frac{3}{4}} \\ 3^{\frac{1}{4}} \\ 3^{\frac{3}{4}} \\ 4^{\frac{1}{2}} \end{array} $	$\frac{3^{\frac{1}{4}}}{3^{\frac{3}{4}}}$	7/8	7/8	5/8		
$3\frac{3}{4}$	$4\frac{1}{2}$	1	1	3/4		
$4\frac{1}{2}$	$5^{\frac{1}{2}}$	$1\frac{1}{4}$	$1\frac{1}{4}$	7/8		

Fuente: MOTT. Robert. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 495p. ISBN: 9688805750

Para la polea, se selecciona una cuña cuadrada de $\frac{5}{16} X \frac{5}{16}$.

Para el cilindro de rallado, se selecciona una cuña cuadrada de $\frac{1}{2} X \frac{1}{2}$.

Como material de las cuñas se selecciona un Acero AISI 1040 estirado en frio. El cual tiene un $\delta_{\nu}=71~Ksi$.

A continuación, se calcula la longitud requerida para las cuñas, empleando la siguiente ecuación, la cual tiene en cuenta los esfuerzos a los que estará sometida, para que no falle.

Ecuación 83. Longitud de cuña

$$L = \frac{4 * T * N}{D * W * \delta_{\mathcal{Y}}}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

T , Torque del elemento de máquina Lb * in

N ,Factor de seguridad

D ,Diámetro del eje in

W, Ancho de la cuña in

 δ_{ν} , Resistencia de fluencia del material *Psi*

"El factor de seguridad N=3, para estas aplicaciones en ejes es adecuado" 66.

3.2.3.5.1 Longitud de la cuña para la polea. En cálculos anteriores de la sección $\underline{3.2.3.3}$, se determinó que el torque en la polea es de $T = 109.56 \ Lb * in$.

Con el eje estipulado para la polea y la cuña seleccionada anteriormente, se procede a remplazar los valores en la ecuación de longitud de cuña y se obtiene:

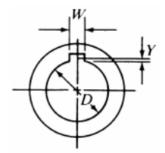
$$L = \frac{4 * 109.56 Lb * in * 3}{1\frac{3}{8} in * \frac{5}{16} in * 71000 Psi}$$

⁶⁶ MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

$$L = 0.043 in$$

Teniendo la longitud requerida de la cuña y de acuerdo al catálogo donde se seleccionó la polea conducida <u>Figura 137</u>, la cual tiene una longitud del cubo de 33 mm, se estipula una longitud para la cuña acorde con esta, por lo tanto, la longitud de la cuña que se empleará en el diseño es de 30 mm, es decir, 1.2 in.

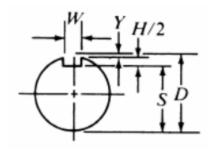
3.2.3.5.2 Longitud de la cuña para el cilindro de rallado. El cilindro de rallado se ensamblara al eje por medio de dos cuñas, una en cada extremo, en cálculos anteriormente realizados en la sección 3.2.3.4, se determinó el torque total en el cilindro de rallado es de T = 108.5 Lb * in.


Con el eje estipulado para el cilindro de rallado y la cuña seleccionada anteriormente, se procede a remplazar los valores en la ecuación y se obtiene:

$$L = \frac{4 * 108.5 Lb * in * 3}{1.77 in * \frac{1}{2} in * 71000 Psi}$$

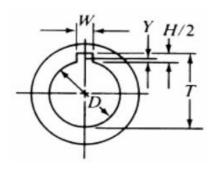
$$L = 0.023 in$$

Teniendo la longitud requerida de las cuñas y de acuerdo a la longitud del cilindro establecida anteriormente, la cual tiene un valor de 500 mm, se estipula una longitud para cada cuña acorde con esta, por lo cual la longitud de las cuñas que se empleará en el diseño es de 50 mm, es decir, 2 in.


A continuación, se procede a dimensionar los cuñeros del eje, a partir de las siguientes ecuaciones:

Ecuación 84. Altura de la cuerda

$$Y = \frac{D - \sqrt{D^2 - W^2}}{2}$$


Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Ecuación 85. Profundidad del cuñero en el eje

$$S = \frac{D-H+\sqrt{D^2-W^2}}{2}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Ecuación 86. Profundidad del cuñero en el cubo

$$T = \frac{D + H + \sqrt{D^2 - W^2}}{2} + C$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Donde:

- Y, Altura de la cuerda in
- D, Diámetro del eje in
- W, Ancho de la cuña in
- S, Profundidad del cuñero en el eje in
- H, Altura de la cuña in
- T, Profundidad del cuñero en el cubo in
- C, Holgura in

"La holgura para cuñas cuadradas o cuñas paralelas es de 0.005 in"67.

Remplazando los valores se obtiene:

⁶⁷ MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750 **3.2.3.5.3** Dimensionamiento de cuñeros para la sección del eje de la polea. A continuación, se dimensiona la altura de la cuerda, empleando la <u>Ecuación 83</u>.

$$Y = \frac{1\frac{3}{8} in - \sqrt{\left(1\frac{3}{8} in\right)^2 - \left(\frac{5}{16} in\right)^2}}{2}$$

$$Y = 0.018 in$$

Se dimensiona la profundidad del cuñero en el eje, empleando la Ecuación 84.

$$S = \frac{1\frac{3}{8} in - \frac{5}{16} in + \sqrt{\left(1\frac{3}{8} in\right)^2 - \left(\frac{5}{16} in\right)^2}}{2}$$

$$S = 1.2008 in$$

Se dimensiona la profundidad del cuñero en el cubo, empleando la Ecuación 85.

$$T = \frac{1\frac{3}{8} in + \frac{5}{16} in + \sqrt{\left(1\frac{3}{8} in\right)^2 - \left(\frac{5}{16} in\right)^2}}{2} + 0.005 in$$

$$T = 1.5183 \ in$$

3.2.3.5.4 Dimensionamiento de cuñeros para la sección del eje del cilindro de rallado. A continuación, se dimensiona la altura de la cuerda, empleando la Ecuación 83.

$$Y = \frac{1.77 \ in - \sqrt{(1.77 \ in)^2 - \left(\frac{1}{2} \ in\right)^2}}{2}$$

$$Y = 0.03601 in$$

Se dimensiona la profundidad del cuñero en el eje, empleando La Ecuación 84.

$$S = \frac{1.77 \ in - \frac{1}{2} \ in + \sqrt{(1.77 \ in)^2 - \left(\frac{1}{2} \ in\right)^2}}{2}$$

$$S = 1.4856 \ in$$

Se dimensiona la profundidad del cuñero en el cubo, empleando la Ecuación 85

$$T = \frac{1.77 in + \frac{1}{2} in + \sqrt{(1.77 in)^2 - (\frac{1}{2} in)^2}}{2} + 0.005 in$$

$$T = 1.9906 in$$

3.2.3.6 Selección de rodamientos. En el eje de transmisión de potencia, se instalarán dos rodamientos los cuales soportan cargas radiales, anteriormente en la sección <u>3.2.3.4</u>, se determinaron las reacciones de estos rodamientos, se analizará el rodamiento que esté sometido a una carga mayor.

El rodamiento en el punto C, soporta una carga radial mayor que el rodamiento en el punto A, por lo tanto, se realizará la selección basados en la carga de 133.40 Lb, en el diseño se busca seleccionar rodamientos de bolas, para esto se procede a calcular la capacidad de carga básica del rodamiento empleando la siguiente ecuación:

Ecuación 87. Capacidad de carga dinámica básica

$$C = P_d \left(\frac{L_d}{10^6}\right)^{\frac{1}{k}}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006.

950 p. ISBN: 9688805750

Donde:

C, Capacidad de carga dinámica básica Lb

 P_d , Carga de diseño Lb

 L_d , Duración de diseño *Revoluciones*

"K = 3, para rodamientos de bolas"68.

En la duración de diseño se tiene en cuenta las revoluciones por minuto del eje y la duración de diseño en horas, a partir de la siguiente ecuación:

Ecuación 88. Duración de diseño en revoluciones

$$L_d = L_d \ en \ horas * rpm * \frac{60 \ min}{horas}$$

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

Tabla 17. Duración de diseño recomendada para rodamientos

Aplicación	Duración de diseño L_{10} , h
Electrodomésticos	1000-2000
Motores de aviación	1000-4000
Automotores	1500-5000
Equipo agrícola	3000-6000
Elevadores, ventiladores industriales, transmisiones de usos múltiples	8000-15 000
Motores eléctricos, sopladores industriales, máquinas industriales en general	20 000-30 000
Bombas y compresores	40 000-60 000
Equipo crítico en funcionamiento durante 24 h	100 000-200 000

Fuente: MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

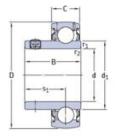
La duración de diseño recomendada, para equipos agrícolas según la tabla anterior es de 3000 – 6000 h, se selecciona el valor de 4000 h para los cálculos pertinentes.

Remplazando en la ecuación los valores se obtiene:

$$L_d = 4000 \ h * 2300 \ rpm * \frac{60 \ min}{hora}$$

⁶⁸ MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

$$L_d = 5.52 x 10^8 Revoluciones$$


A continuación, se calcula la capacidad de carga básica para el rodamiento, remplazando los valores se obtiene:

$$C = 133.40 Lb \left(\frac{5.52 \times 10^8 Rev}{10^6}\right)^{\frac{1}{3}}$$

$$C = 1094.3 Lb$$

Empleando el catálogo de rodamientos SKF se procede a seleccionar el rodamiento que soporte la carga dinámica básica calculada anteriormente y satisfaga el diámetro del eje estipulado.

Figura 160. Especificaciones generales del rodamiento seleccionado Catalogo SKF

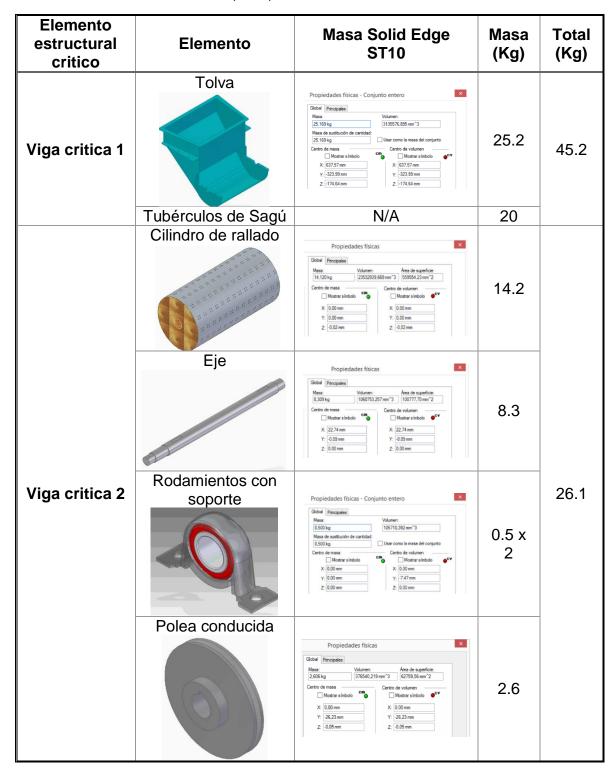
Dimensiones						Capacidad de carga básica dinámica estática		Carga Velocidad limite de límite fatiga con toleran-	Masa	Designación				
d	D	D	D	В	С	d ₁	s ₁	r _{1,2} min,	С	Co	Pu	cia del eje h6		
mm							kN		kN	r. p. m.	kg	-		
35	72	33	19	46,1	23,3	1	25,5	15,3	0,655	5300	0,31	YAT 207		
	72	42,9	19	46,1	25,4	1	25,5	15,3	0,655	5 300	0,44	E2.YAR 207-2F		
	72	42,9	19	46,1	25,4	1	25,5	15,3	0,655	5 300	0,41	YAR 207-2F		
	72	42.9	19	46,1	25,4	1	25,5	15,3	0,655	3 200	0,41	YAR 207-2RF		
	72	42,9	19	46,1	25.4	1	21,6	15,3	0,655	3 200	0.42	YAR 207-2RF/HV		
	72	42,9	19	46,1	25,4	1	25,5	15,3	0,655	3 200	0,42	YAR 207-2RF/VE495		
	72	42.9	19	46,1	25,4	1	25,5	15,3	0,655	1 100	0.44	YARAG 207		
40	80	36	21	51.8	25.3	1	30,7	19	0.8	4 800	0.43	YAT 208		
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	4 800	0,59	E2.YAR 208-2F		
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	4 800	0,55	YAR 208-2F		
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	2800	0,55	YAR 208-2RF		
	80	49.2	21	51,8	30,2	1	26	19	0,8	2800	0,56	YAR 208-2RF/HV		
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	2 800	0,56	YAR 208-2RF/VE495		
	80	49,2	21	51,8	30,2	1	30,7	19	8,0	950	0,59	YARAG 208		
45	85	37	22	56,8	25,8	1	33,2	21,6	0,915	4300	0.48	YAT 209		

Fuente: SKF. Rodamientos. [en línea]. [consultado el 1 mayo., del 2020]. Disponible en: https://www.skf.com/binary/86-121486/10000_2-ES---Rolling-bearings.pdf

Se selecciona el mismo rodamiento tipo YAT 208 para los puntos A y C.

3.2.3.7 Selección del soporte de pie del rodamiento. Se procede a seleccionar un soporte de pie para el rodamiento anterior.

Figura 161. Especificaciones generales del soporte de pie seleccionado catálogo SKF


Fuente: SKF. Rodamientos. [en línea]. [consultado el 1 mayo., del 2020]. Disponible en: http://www.skftraining.info/binary/96-129182/0901d196802a2b8f-13728-EN-Y-bearing-and-Y-b-units.pdf

3.2.4 Diseño estructural del sistema de rallado. La estructura es la encargada de soportar todos los componentes que conforman el sistema de rallado, por lo tanto, tendrá que ser capaz de soportar el peso de estos, se realizara el análisis a los elementos más críticos de la estructura, es decir, aquellos que soportan la mayor carga.

En el sistema estructural hay dos vigas críticas y dos columnas críticas, se analizarán las que tengan que soportar la mayor carga. Una de estas vigas soporta La carga total del peso de la tolva de alimentación, tubérculos de Sagú, y la otra viga soporta el cilindro de rallado, eje, rodamientos con soporte y la polea conducida.

Se procede a calcular la masa de estos elementos con ayuda del software Solid Edge, y posteriormente la carga total.

Cuadro 17. Masa de los elementos que soportan los elementos estructurales críticos

Fuente: Elaboración propia con base en: Solid Edge ST10

Como se observa el peso de la tolva de alimentación y los tubérculos de Sagú suman más que el peso de los otros elementos por lo tanto se analizará viga crítica 1 y su respectiva columna.

La carga total se obtiene a partir de la siguiente ecuación:

$$W_{TOTAL} = m_{TOTAL} * g$$

Remplazando los valores se obtiene:

$$W_{TOTAL} = 45.169 \, Kg * 9.8 \, m/s^2$$

$$W_{TOTAL} = 442.66 \, N$$

3.2.4.1 Diseño de vigas por flexión. Para saber si la estructura propuesta, soportara el peso de los elementos, se procede realizar un análisis en la viga más crítica del sistema, a continuación, se muestra la estructura con las respectivas cargas a la que estará sometida.

Viga Critica 1

Viga Critica 2

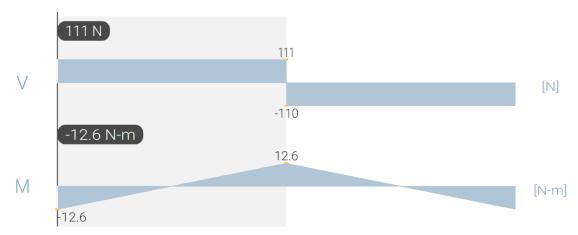
Columna Critica 1

Columna Critica 2

Figura 162. Cargas en la estructura del Sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

De acuerdo a lo anterior la viga critica 1 soporta la carga total dividida en dos, la cual tiene 455.32 mm de largo, se procede a realizar el diagrama de cuerpo libre de la viga.


Figura 163. Diagrama de cuerpo libre de la viga de la estructura del Sistema de rallado

Fuente: Elaboración propia con base en: Deflexión

Ahora se procede a realizar el diagrama de fuerza cortante y momento flector, con ayuda del Software Deflexión.

Figura 164. Diagrama de Fuerza cortante y Momento flector

Fuente: Elaboración propia con base en: Deflexión

Como se observa la fuerza cortante máxima es de 111 N y el Momento flector máximo es de 12.6 Nm.

El método que se utilizará para el análisis a los elementos de la estructura del sistema de rallado será el mismo que se realizó anteriormente a la estructura del sistema de lavado, por lo tanto, se emplearán las ecuaciones pertinentes.

De acuerdo a lo especificado en la sección 3.1.10.1, el material de toda la estructura de la máquina es acero estructural A-36, el cual tiene un esfuerzo admisible $\sigma_y = 250 \ MPa$

A partir de la ecuación de esfuerzo normal por flexión <u>Ecuación 37</u>, se procede a despejar el módulo de sección.

Remplazando los datos se obtiene:

$$S = \frac{M}{\sigma}$$

Se asigna un factor de seguridad de FS= 2

$$\sigma = \sigma_y / FS$$

Remplazando los datos se obtiene:

$$S_r = \frac{12.6 \ Nm}{\frac{250 \ Mpa}{2} * \frac{1000000 \ \frac{N}{m^2}}{1 \ MPa}}$$

Donde:

 S_r , Módulo de sección requerido m^3

$$S_r = 1.01 \times 10^{-7} m^3$$

Es decir se tiene un módulo de sección requerido de $0.1\ cm^3$, con el cual se verifica si el perfil cuadrado 50 X 50 con 4 mm de espesor, estipulado anteriormente como el perfil de la estructura de la máquina en la <u>Figura 100</u>, es el adecuado para el diseño de la estructura.

Donde se cumple:

$$S \ge S_r$$

$$7,79 \text{ } cm^3, \ge 0.1 \text{ } cm^3$$

3.2.4.2 Relación de esbeltez y resistencia de diseño. Se procede a verificar que las columnas de la estructura no sufran pandeo, por lo tanto, se emplea la relación de esbeltez y la resistencia de diseño basados en el libro diseño de estructuras de acero de Mc Cormac, y el diseño de elementos sometidos a comprensión.

Se analizará la columna critica 1 mostrada en la <u>Figura 162</u>, y además de soportar la carga total calculada anteriormente, se le adiciona el peso de la estructura que se observa en la parte superior de la columna critica, para esto se utiliza el software Solid Edge obteniendo que el peso de la estructura superior es de aproximadamente 10 Kg, por lo tanto, la carga total que soportara la columna es la siguiente:

$$m_{TOTAL} = m_{Sag\'u} + m_{tolva} + m_{estructura}$$

Remplazando los valores se obtiene:

$$m_{TOTAL} = 20 Kg + 25.169 Kg + 10 Kg$$
 $m_{TOTAL} = 55.169 Kg$

La carga total se calcula con la Ecuación 22.

$$W_{TOTAL} = 55.169 \, Kg * 9.8 \, m/s^2$$

$$W_{TOTAL} = 540.66 \, N$$

Esta carga se divide en 4, ya que es el número de columnas que la soportan, siendo 135.16 N el valor de la fuerza a la que estará sometida esta columna.

Se procede a calcular la relación de esbeltez de la columna empleando la <u>Ecuación</u> 38.

El radio de giro se obtiene según el catalogo del perfil seleccionado en la <u>Figura 97</u>. el cual es $1.90 \ cm^2$ y el factor de longitud efectiva se determina a partir de la <u>Tabla</u> 7.

Se toma un valor de K de 0.5 ya que el elemento se encuentra como un empotramiento en ambos extremos.

Remplazando los valores en la <u>Ecuación 38</u> se obtiene:

$$Re = \frac{0.5 * 1.022 \, m}{0.019 \, m}$$
$$27 \le 200$$

La relación de esbeltez obtenida es menor que 200 por lo tanto se concluye que no se presenta pandeo en la columna y que el perfil seleccionado anteriormente es el adecuado.

Ahora se procede a determinar el esfuerzo de pandeo crítico, donde se debe saber si se trata con una columna corta o larga, para esto se emplea la <u>Ecuación 39</u>.

Para el acero estructural A-36 se tiene que:

$$\sigma_y = 250 MPa$$

$$E = 200 GPa$$

Remplazando los valores se obtiene:

$$\lambda = \frac{0.5 * 1.022 m}{\pi * 0.019 m} * \sqrt{\frac{250 X 10^6 Pa}{200 X 10^9 Pa}}$$

$$\lambda = 0.30$$

Si $\lambda \leq 1.5$ Es una columna corta

Si $\lambda \geq 1.5$ Es una columna larga

Debido a que se encuentra en el rango de columna corta se emplea la ecuación para el esfuerzo critico de pandeo <u>Ecuación 40</u>.

Remplazando los valores se obtiene:

$$\sigma_{cr} = (0.658^{0.30^2}) * 250 X 10^6 Pa$$

$$\sigma_{cr} = 240757785 Pa$$

Por lo tanto, la resistencia de diseño de elementos sometidos a compresión se determina por la <u>Ecuación 41</u>.

El Área Gross se obtiene según el catalogo del perfil seleccionado en la Figura 97, el cual es $5.41 \ cm^2$.

Remplazando los valores se obtiene:

$$R_d = 0.9 * \left(5.41 \text{ cm}^2 * \frac{1 \text{ m}^2}{10000 \text{ cm}^2}\right) * 240757785 \text{ Pa}$$

$$R_d = 117225 \text{ N}$$

La resistencia de diseño cumple lo siguiente:

$$R_d \ge P_u$$
 $117225 N \ge 135.16 N$

Se concluye que la columna soporta la carga y no presenta pandeo, por lo tanto, es adecuada para el diseño.

- **3.2.4.3.** Análisis de la estructura con el Software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si la estructura del sistema de rallado, con las dimensiones y el material establecidos, soporta la carga anteriormente calculada, con el dimensionamiento estipulado.
- **3.2.4.3.1 Desplazamiento en la estructura.** Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la estructura es de 0,00196 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

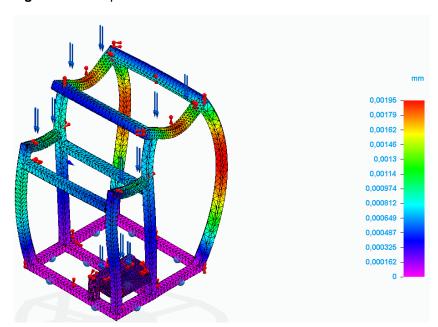


Figura 165. Desplazamiento en la estructura sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.4.3.2 Tensión en la estructura. El esfuerzo Von Misses de la estructura esta entre 0,00027 MPa a 1.36 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 250 MPa, indicando que el diseño de la estructura es conveniente para las cargas asignadas.

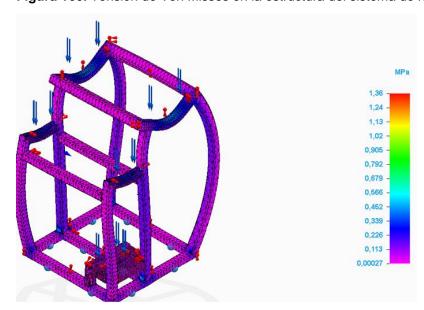


Figura 166. Tensión de Von Misses en la estructura del sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.4.3.3 Factor de seguridad en la estructura. Se evidencia que el factor de seguridad mínimo es de 193 es decir que las dimensiones calculadas y estipuladas anteriormente para la estructura son adecuadas.

9,71e+05 8,9e+05 -8,09e+05 -7,28e+05 -6,49e+05 -4,86e+05 -4,05e+05 -2,43e+05 -2,43e+05 -1,62e+05 -8,11e+04 -193

Figura 167. Factor de seguridad en la estructura del sistema de rallado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.2.4.4 Selección de la Soldadura. Para seleccionar la soldadura se realizará el método propuesto en el libro de diseño de máquinas de Norton, utilizado anteriormente en la sección <u>3.1.10.5</u>, donde se emplearán las ecuaciones pertinentes, las uniones de la estructura del sistema de rallado, la tolva de alimentación y la tapa para la tolva, estarán soldadas, donde se tendrá en cuenta para el análisis el elemento más crítico de la estructura, y luego esta soldadura será empleada en las partes donde la requieran.

El elemento más crítico de la estructura es la viga que recibe la carga de la tolva de almacenamiento y los tubérculos de Sagú como se evidencia en la <u>Cuadro 17</u>, la soldadura se encontrará sometida a una carga de flexión y cortante directa, y se determinan a partir de la <u>Ecuación 42</u> y <u>Ecuación 43</u>, respectivamente.

Los factores geométricos para el análisis de la soldadura, se encuentran en la <u>Figura</u> <u>102</u>.

Se selecciona los factores geométricos número 7 ya que se tiene un perfil cuadrado de 50 X 50 mm.

Se procede a calcular la carga por flexión y cortante directo de la soldadura, sabiendo que en la <u>Figura 164</u>, se determinó la fuerza cortante de 111 N y el momento flector máximo de 12.6 Nm, de la viga de análisis.

Remplazando los valores en la <u>Ecuación 42</u>, de carga por flexión se obtiene:

$$f_b = \frac{12.6 \, Nm * \frac{1 \, Lb \, in}{0.112985 \, Nm}}{\left(50 \, mm * \frac{1 \, in}{25.4 \, mm}\right) * \left(50 \, mm * \frac{1 \, in}{25.4 \, mm}\right) + \frac{\left(50 \, mm * \frac{1 \, in}{25.4 \, mm}\right)^2}{3}}$$

$$f_s = 21.58 \, \frac{Lb}{in}$$

Remplazando los valores en la Ecuación 43, de cortante directo se obtiene:

$$f_{s} = \frac{111 N * \frac{0.224809 Lb}{1 N}}{\left(2 * \left(50 mm * \frac{1 in}{25.4 mm}\right)\right) + \left(2 * \left(50 mm * \frac{1 in}{25.4 mm}\right)\right)}$$

$$f_{s} = 3.17 \frac{Lb}{in}$$

La carga total a la que estará sometida la soldadura, se determina de la siguiente ecuación:

$$f_T = \sqrt{{f_b}^2 + {f_s}^2}$$

Remplazando los valores se obtiene:

$$f_T = \sqrt{\left(21.58 \frac{Lb}{in}\right)^2 + \left(3.17 \frac{Lb}{in}\right)^2}$$

$$f_T = 21.81 \, \frac{Lb}{in}$$

Se selecciona un electrodo E70, el cual se usa para estructuras, tiene buenas propiedades y una resistencia a la tensión de $70000 \frac{Lb}{in^2}$.

El esfuerzo permisible se obtiene del 30% de la resistencia a la tensión del electrodo⁶⁹:

$$au_{permisible} = 0.3 * Exx$$

Remplazando los valores se obtiene el siguiente esfuerzo permisible de la soldadura seleccionada:

$$\tau_{permisible} = 0.3 * 70000 \frac{Lb}{in^2}$$

$$\tau_{permisible} = 21000 \frac{Lb}{in^2}$$

A continuación, se procede a calcular la longitud requerida para el hilo de soldadura, empleando la <u>Ecuación 45</u>.

Remplazando los valores y se obtiene:

$$w = \frac{21.81 \frac{Lb}{in}}{21000 \frac{Lb}{in^2}}$$

$$w = 0.001 in$$

El tamaño requerido para la soldadura es de 0.001 in por lo tanto empleando la <u>Figura 103</u>, se selecciona un cordón de tamaño 1/8 in para las partes que requieran ser soldadas.

⁶⁹ NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4.

3.2.5 Acrílico para tolva ralladora. Este acrílico es el encargado de facilitar la salida del tubérculo de Sagú del sistema de lavado a la tolva de alimentación del sistema de rallado, también evita que los tubérculos se contaminen y no se salgan del proceso, se ubica en la parte superior de la tolva del sistema de rallado, sus características y especificaciones se encuentran en el Anexo A, Plano 18.

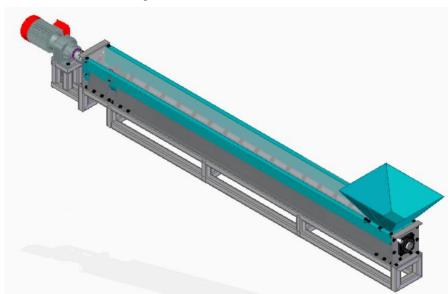



Figura 168. Acrílico tolva de la ralladora

Fuente: Elaboración propia

3.3 SISTEMA DE TAMIZADO

Este sistema es el que se encarga tamizar el almidón, una vez rallado el tubérculo, se obtiene una mezcla de partículas de diferentes tamaños, la cual está compuesta por fibra y almidón húmedo "Lechada", al realizar el tamizado se separa el almidón húmedo del afrecho o unche como es llamado comúnmente en el municipio de Puente Quetame.

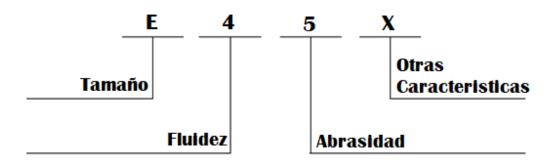
Figura 169. Sistema de tamizado de la máquina para producción de almidón húmedo de Sagú

Fuente: Elaboración propia con base en: Solid Edge ST10

3.3.1 Transportador Helicoidal. El transportador helicoidal o tornillo sin fin, será el encargado de separar el afrecho del almidón húmedo de Sagú, por medio de un movimiento rotacional ira deshidratando y presionando la masa rallada de tubérculos, contra la malla del tamiz, el diseño del transportador helicoidal y componentes del sistema de tamizado, se realizará basados en el "manual de manejo de materiales, del gran catálogo de productos de Martin Sprocket & Gear, Inc"⁷⁰, basado en la Norma CEMA, el cual se enfatiza en el diseño de ingeniería paso a paso de los transportadores helicoidales, para una adecuada selección por catálogo de los componentes, y su correcta instalación y mantenimiento.

⁷⁰ MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidale

3.3.1.1 Características del material. Se procede a determinar las características del material a tratar, para esto, el manual de Martin Sprocket & Gear, Inc, basado en la Norma CEMA, plantea una serie de tablas, las cuales tienen materiales que comúnmente se usan para este tipo de procesos, como se sabe en esta etapa de la máquina, se tamizaran los tubérculos de sagú que fueron rallados previamente, obteniendo una masa fibrosa y húmeda el cual sería el material, este material no se encuentra con un código estipulado, sin embargo, el manual plantea la siguiente tabla para estructurar un código de material no conocido.


Figura 170. Código del material CEMA

Clase		Características de Material	Código				
Densidad	Densidad a	Densidad a granel, Sin Compactar					
		Malla No. 200 (.0029') y menor	A200				
	Muy Fino	Malla No. 100 (.0059") y menor	A100				
		Malla No. 40 (.016") y menor	A40				
	Fino	Malla No. 6 (.132*) y menor	B6				
Tamaño		1/2" y menor (malla 6" to 1/2")	C1/2				
lamano	Granular	3" y menor (1/2" to 3")	D3				
		7* y menor (3* to 7*)	D7				
	_	16" y por debajo (0" to 16")	D16				
	Terrones	Arriba de 16º a ser especificado, X = tamaño máximo	DX				
	Irregular	Fibroso, Cilíndrico, etc.	E				
	Fluido Muy L	ibre	1				
Ph. i.e.	Fluido Libre		2				
Fluidez	Fluido Prome	edio	3				
	Fluido Lento		4				
	Abrasividad I	Media	5				
Abrasividad	Abrasividad I	Moderada	6				
	Abrasividad I	Extrema	7				
	Acumulación	y Endurecimiento	F				
	Genera Electr	ricidad Estática	G				
	Descomposio	ción — Se Deteriora en Almacenamiento	н				
	Inflamabilida	d	J				
	Se Hace Plás	tico o Tiende a Suavizarse	K				
	Muy Polvoso		L				
	Al Airearse S	e Convierte en Fluido	M				
	Explosividad		N				
Propiedades	Pegajoso —	Adhesión	0				
Misceláneas	Contaminable	e — Afecta uso	P				
0	Degradable -	- Afecta uso	Q				
Peligrosas	Emite Humos	s o gases Tóxicos Peligrosos	R				
	Altamente Co	orrosivo	S				
	Medianamen	te Corrosivo	T				
	Higroscópico		U				
	Se Entrelaza,	Enreda o Aglomera	V				
	Presencia de	Aceites	w				
	Se Comprime	e Bajo Presión	Х				
	Muy Ligero -	Puede Ser Levantado por el Viento	Υ				
	Temperatura	Elevada	Z				

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transp ortadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Según la clasificación del material, se obtiene el siguiente código:

Figura 171. Código del material CEMA para el rallado de tubérculos de Sagú

Fuente: Elaboración propia

3.3.1.2 Capacidad del transportador helicoidal. Se procede a determinar la capacidad requerida para el transportador helicoidal, para esto es necesario identificar la densidad del material que se va a tratar y la capacidad de la máquina, para que se cumpla con los parámetros establecidos en el Cuadro 6, el tubérculo de sagú previamente rallado, por medio de indagaciones en documentos e investigaciones, se determina que tiene una "densidad de $0.86 \frac{g}{cm^3}$ " 71 , la capacidad de la maquina es de 550 Kg/h sin embargo, se trabajara para una sobre carga asumiendo 700 Kg/h como la capacidad máxima, la capacidad requerida se obtiene a partir de la siguiente ecuación:

⁷¹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

Ecuación 89. Capacidad requerida del transportador helicoidal

$$C_{Req} = \frac{C}{\rho}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_tr_ansportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Donde:

 C_{Req} , Capacidad requerida para el transportador helicoidal $\frac{ft^3}{h}$

C, Capacidad del sistema de tamizado $\frac{Lb}{h}$

ho, densidad de la masa rallada de tubérculos de Sagú $rac{Lb}{ft^3}$

Remplazando los valores en la ecuación se obtiene:

$$C_{Req} = \frac{700 \frac{Kg}{h} * \left(\frac{2.205 Lb}{1 Kg}\right)}{0.86 \frac{g}{cm^3} * \left(\frac{62.428 \frac{Lb}{ft^3}}{1 \frac{g}{cm^3}}\right)}$$

$$C_{Req} = \frac{1545 \frac{Lb}{h}}{50 \frac{Lb}{ft^3}}$$

$$C_{Req} = 31 \; \frac{ft^3}{h}$$

3.3.1.3 Diámetro del Transportador Helicoidal. El diámetro del transportador del helicoidal se determina asumiendo un porcentaje de llenado de la artesa, se selecciona un llenado del 30% y se trabajara con el llenado B, ya que este es para transportadores helicoidales que trabajan a revoluciones por minutos más lentas, lo cual es lo que se desea en esta aplicación según los parámetros de diseños establecidos en el <u>Cuadro 6</u>, teniendo en cuenta la capacidad requerida calculada

anteriormente, se selecciona una capacidad por encima, empleando la siguiente figura.

Figura 172. Capacidades para transportadores helicoidales horizontales

	Carga de Artesa	Diámetro del Helicoidal		Cúbicos por Hora Completo)	Máx.
	ouiga de rittesa	(Pulgadas)	A 1 RPM	A Máx. RPM	RPM
		4	0.62	114	184
		6	2.23	368	165
		9	8.20	1270	155
		10	11.40	1710	150
		12	19.40	2820	145
45%		14	31.20	4370	140
40 /0	18 20 to ()	16	46.70	6060	130
		18	67.60	8120	120
		20	93.70	10300	110
		24	164.00	16400	100
		30	323.00	29070	90
		36	553.20	4142	75
		4	0.41	53	130
	=	6	1.49	180	120
		9	5.45	545	100
		10	7.57	720	95
30%		12	12.90	1160	90
30 /0		14	20.80	1770	85
A	Harris ()	16	31.20	2500	80
A		18	45.00	3380	75
	Water Street	20	62.80	4370	70
		24	109.00	7100	65
		30	216.00	12960	60
		36	368.80	18400	50
		4	0.41	29	72
		6	1.49	90	60
	7	9	5.45	300	55
		10	7.60	418	55
30%		12	12.90	645	50
30 /0		14	20.80	1040	50
В		16	31.20	1400	45
D		18	45.00	2025	45
	The state of the s	20	62.80	2500	40
		24	109.00	4360	40
	-	30	216.00	7560	35
	**************************************	36	368.80	11064	30
		4	0.21	15	72
		. 6	0.75	45	60
		9	2.72	150	55
		10	3.80	210	55
		12	6.40	325	50
15%	/ > \	14	10.40	520	50
1070	()	16	15.60	700	45
	Tion I	18	22.50	1010	45
		20	31.20	1250	40
		24	54.60	2180	40
		30	108.00	3780	35
		36	184.40	5537	30

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoi dales/seccion%20h%20-%20helicoidales.pdf

De acuerdo a la capacidad y al porcentaje de llenado, se selecciona un diámetro para el transportador helicoidal de 6 pulgadas.

- **3.3.1.4 Longitud del Transportador Helicoidal.** La longitud del transportador helicoidal se estipula de acuerdo a maquinas del mercado y visitas realizadas al municipio de Puente Quetame, donde se realiza esta etapa del proceso, por medio de tamices con transportadores de paletas artesanales, se establece una longitud de 3 m.
- **3.3.1.5 Velocidad del Transportador Helicoidal.** La velocidad del transportador helicoidal se determina a partir de la siguiente ecuación:

Ecuación 90. Velocidad del transportador helicoidal

$$N = \frac{C_{req}}{C_{1\,RPM}}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20han/dling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Donde:

N, Velocidad del transportador helicoidal RPM C_{req} , Capacidad requerida $\frac{ft^3}{h}$ $C_{1\,RPM}$, Capacidad a 1 RPM $\frac{ft^3}{h}$

Remplazando la capacidad requerida anteriormente calculada y la capacidad a 1 RPM de acuerdo al diámetro seleccionado en la <u>Figura 172</u>, se obtiene lo siguiente:

$$N = \frac{31 \frac{ft^3}{h}}{1.49 \frac{ft^3}{h} \ a \ 1 \ RPM}$$

$$N = 20 RPM$$

Esta velocidad cumple con la velocidad establecida en el <u>Cuadro 6</u>, de parámetros de diseño, por lo tanto, es adecuada y también no es mayor a las RPM máximas con las que trabaja el transportador helicoidal seleccionado en la <u>Figura 172</u> de 6 pulgadas, las cuales son de 60 RPM.

3.3.1.6 Selección del Transportador Helicoidal. Empleando la tabla planteada por el manual donde se tienen códigos de materiales estipulados, se procede a verificar cual es la serie de grupo de componentes asignada para el material con características más similares al rallado de tubérculos de Sagú.

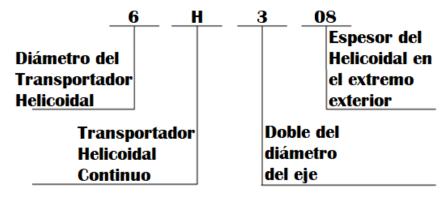
Figura 173. Características de los materiales

Material	Peso libras por pie cúbico	Código de Material	Selección de Rodamiento Intermedio	Series de Componentes	Factor de Material Fm	Carga de Artesa
Cloruro de polivinilo en polvo, pellets	20-30	E-45KPqT	S	1	.6	30A
Cloruro de Potasio, pellets	120-130	C1/2-25Tu	Н	3	1.6	45
Cloruro de Sodio (ver Sal)	_	_	_	_	_	_
Cobre, Mineral de	120-150	DX-36	Н	3	4	30B
Cobre, Mineral, triturado	100-150	D3-36	Н	3	4	30B
Coco en trozos	20-22	E-45	S	2	1.5	30A
Coque a granel	23-35	D7-37	Н	3	1.2	15
Coquie de petróleo, calcinado	35-45	D7-37	Н	3	1.3	15
				_		

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Sabiendo el diámetro del transportador helicoidal seleccionado en la <u>Figura 172</u> y el grupo de componentes 2, se procede a identificar el número de transportador helicoidal.

Figura 174. Grupo de componentes 2


		Grupo de Com	ponentes 2		
Diámetro del Helicoidal	Diámetro del Eje	Número de	Helicoidal	Espesor, Calibre Americ	ano Estándar (Pulgadas)
(Pulgadas)	(Pulgadas)	Helicoidales Continuos	Helicoidales Seccionales	Artesa	Cubierta
6	1 1/2	6H308	6S309	Cal. 14	Cal. 16
9	1 1/2	9H312	9S309	Cal. 10	Cal. 14
9	2	9H412	9S412	Cal. 10	Cal. 14
12	2	12H412	12S412	3/16*	Cal. 14
12	2 7/16	12H512	12S512	3/16*	Cal. 14
12	3	12H614	12S616	3/16*	Cal. 14
14	2 7/16	_	14S512	3/16*	Cal. 14
14	3	14H614	14S616	3/16*	Cal. 14
16	3	16H614	16S616	3/16"	Cal. 14
18	3	_	18S616	3/16*	Cal. 12
20	3	_	20S616	3/16*	Cal. 12
24	3 7/16	_	24S716	3/16*	Cal. 12
30	3 15/16	_	30S824	1/4"	Cal. 10
36	4 7/16	_	36S924	3/8"	3/16"

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Se selecciona un numero de helicoidal continuo 6H308, indicando el espesor de la artesa calibre 14 y el espesor de la cubierta calibre 16.

La estructura del código del transportador helicoidal está dada por lo siguiente:

Figura 175. Estructura del código del transportador helicoidal

Fuente: Elaboración propia


Contraction of the second seco

Figura 176. Transportador helicoidal del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST10

Teniendo en cuenta la selección del número del helicoidal, se procede a identificar sus características dimensionales, empleando la siguiente figura de helicoidales continuos, estándares CEMA:

Figura 177. Características dimensionales del transportador helicoidal seleccionado

D1/			Tamaño			A		3		C	l)	F	G	Н								
Diámetro del Helicoidal	Diámetro de Eies	Designación de Tamaño	de Tubo Cédula	Longitud, Pies y		Tolerancia en Diámetro		Tolerancia en Diámetro								spesor Tolerancia en Paso			Diámetro Interno del Buje		Distancia al 1er	Centros al 2do	Tamaño Nominal
y Paso	do Ljos	de lamano	40	Pulgadas	Más	Menos	Orilla Interior	Orilla Exterior	Más	Menos	Mínimo	Máximo	Barreno del Perno	Barreno del Perno	Perforación del Tornillo								
4	1	4H206	1 1/4	9-101/2	1/16	1/8	3/16	3/32	1/2	1/4	1.005	1.016	1/2	2	13/32								
6	1 1/2	6H304	2	9 – 10	1/16	3/16	1/8	1/16	1/2	1/4	1.505	1.516	7/8	3	17/32								
6	1 1/2	6H308	2	9 – 10	1/16	3/16	1/4	1/8	3/4	1/4	1.505	1.516	7/8	3	17/32								
6	1 1/2	6H312	2	9 – 10	1/16	3/16	3/8	3/16	3/4	1/4	1.505	1.516	7/8	3	17/32								

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/doc_transportadores%20helicoidales/seccion%20h%2 0-%20helicoidales.pdf

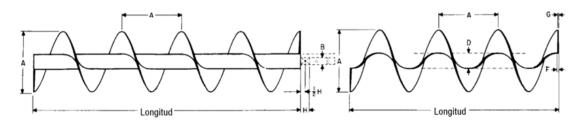
Se procede a detallar el helicoidal para un adecuado diseño y fabricación, el helicoidal seleccionado es continuo por lo cual su sección transversal es cónica en donde el espesor de su extremo inferior es el doble del espesor de su extremo exterior⁷².

Figura 178. Sección transversal del helicoidal continuo

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transpo rtadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

⁷² MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Empleando la siguiente figura, se tiene a detalle el espesor del helicoidal.


Figura 179. Dimensionamiento del helicoidal continuo

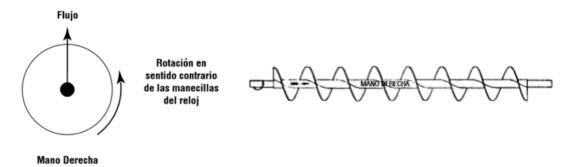
			Helicoid	lal Continuo				
Diámetro del	Designación		Diámetro	Diámetro	Espesor del Helicoidal (Pulg.			
Helicoidal (Pulgadas)	de Tamaño del Helicoidal ▽	Designación Anterior	de Eje (Pulgadas)	Nominal del Tubo (Pulgadas)	Extremo Interior	Extremo Exterior		
4	4H206	4 X	1	1 3/8	3/16	3/32		
	6H304	6 Estándar	1 1/2	2	1/8	1/16		
6	6H308	6 X	1 1/2	2	1/4	1/8		
	6H312	6 XX	1 1/2	2	3/8	3/16		

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoid ales/seccion%20h%20-%20helicoidales.pdf

Empleando la siguiente figura se obtiene el peso del transportador helicoidal.

Figura 180. Especificaciones y peso Lb del transportador helicoidal

Helicoidal Continuo


Espiral

Α	В	No. de	No. do	0	D Espesor del Tamaño de Tubo Helicoidal		or del	Н		Peso Promedio (Ib)				
Diámetro	Diámetro	Parte	No. de Parte	Tamaño			Ancho del	Long. Estándar	Helicoidal	Completo	Sólo Espiral			
del	del Eje	Helicoidal	Sólo Espiral	Interior	Exterior	F	G	Buje del	Pies-Pulg.	Longitud	Por	Longitud	Por	
Helcoidal	uei Eje	Completo	Solo Espirar	Interior	Exterior	Interior	Exterior	Colgante	r ica-r uig.	Estándar	Pie	Estándar	Pie	
4	1	4H206-*	4HF206-*	1 3/8	1 5/8	3/16	3/32	1 1/2	9 - 10 1/2	40	4	16	1.3	
	1 1/2	6H304-*	6HF304-*	2	2 3/8	1/8	1/16	2	9 – 10	52	5	14	1.4	
6	1 1/2	6H308-*	6HF308-*	2	2 3/8	1/4	1/8	2	9 – 10	62	6	28	2.8	
	1 1/2	6H312-*	6HF312-*	2	2 3/8	3/8	3/16	2	9 – 10	72	7	42	4.3	

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Es importante determinar el sentido de giro del transportador helicoidal para establecer un avance del material en una dirección, es decir, en el diseño se requiere que el material ingrese por un extremo y el flujo del material se aleje hasta llegar a la descarga, la cual estará ubicada en el otro extremo, por lo tanto, se seleccionara un transportador helicoidal mano derecha, como se observa en la siguiente figura:

Figura 181. Sentido de giro del transportador helicoidal

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Se procede a detallar el tubo del transportador helicoidal el cual por medio de la <u>Figura 177</u>, se sabe que es de diámetro 2 pulgadas y cedula 40.

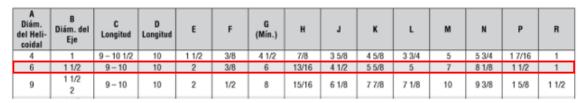
Figura 182. Tamaño de tubo, dimensiones y peso

Tamaño Nom. del Tubo (pulgadas)	Diámetro Exterior (pulg.)		Cédu	la I.P.S	Pared (pulg.)	Diámetro Interior (pulg.)	Peso/ Pie (lb)
			5S		.065	2.245	1.604
			10S		.109	2.157	2.638
2	2.375	40	40S	Estándar	.154	2.067	3.653
2	2.373	80	80S	Extra Pesado	.218	1.939	5.022
		160			.343	1.689	7.444
				XX Pesado	.436	1.503	9.029

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

3.3.2 Selección de la artesa del tamiz. La artesa es el cuerpo del sistema del tamizado, es donde estará ubicado el rallado de tubérculos de Sagú mientras el transportador helicoidal lo tamiza contra esta, ya que tendrá una serie de perforaciones en su fondo de 8 agujeros por pulgada, y una malla de acero inoxidable mesh 80, es decir, 80 agujeros por pulgada⁷³, lo equivalente a "0.007 pulgadas por agujero"⁷⁴, esta será la encargada de dejar pasar el almidón húmedo y retener en la artesa el afrecho.

La artesa se selecciona de acuerdo al diámetro del helicoidal, empleando la siguiente figura.


Distancia entre Centros de Colgantes

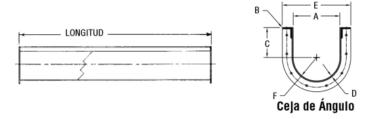
Longitud estándar del Helicoidal

E

Longitud Estándar de Artesas

Figura 183. Artesa en "U"

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf


Se selecciona una artesa en forma de U, ya que es una artesa económica y de gran calidad, acorde al diseño del sistema de tamizado.

⁷³ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20s agu.pdf

74 SUN POWER THERMOELECTRICS SL. Tabla de conversión de malla. [en línea]. [consultado el 16 abril, del 2020]. Disponible en: http://sunpowerspain.com/pdf/Domestico/TABLA%20DE%20CONVERSION%20DE%20MALLA%20A%20MICRONES.pdf

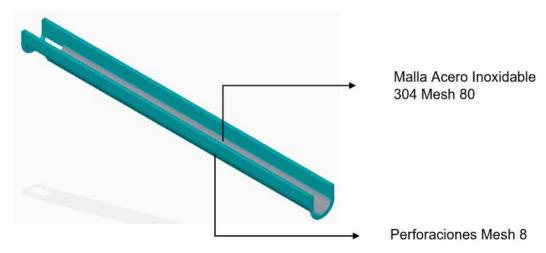
Ahora se procede a seleccionar las características de la artesa estándar CEMA, teniendo en cuenta el calibre que se requiere para está, empleando la <u>Figura 174</u>, y de acuerdo a la estructura del código del transportador helicoidal seleccionado anteriormente en la <u>Figura 172</u>.

Figura 184. Artesas estándar CEMA dimensionamiento

Diámetro	D	A	rtesa con	Ceja de	Ángulo		Arte	esa con (Ceja Forr	nada 🔺						
del	_	Número de		Pes	o lb		Número de		Pes	o Ib		Α	В	l c	F	F
Trans- portador	la Artesa	Parte	Largo 10'*	Largo 5'	Largo 12'	Largo 6'	Parte	Largo 10'	Largo 5'	Largo 12'	Largo 6'	n				
	☐ 16 CAL.	4CTA16	53	29	_	_	4CTF16	41	23	_	_				7 5/8	
4	14	4CTA14	60	33	_	_	4CTF14	50	28	_	_	5	1 1/4	3 5/8	7 11/16	2 1/2
	12	4CTA12	78	42	_	_	4CTF12	70	38	_	_				7 3/4	
	☐ 16 CAL.	6CTA16	67	44	_	_	6CTF16	55	32	_	_				9 5/8	
	14	6CTA14	78	49	_	_	6CTF14	67	38	_	_				9 11/16	
6	12	6CTA12	101	60	_	_	6CTF12	91	50	_	_	7	1 1/4	4 1/2	9 3/4	3 1/2
	10	6CTA10	123	73	_	_	6CTF10	117	64	_	_				9 3/4	
	3/16	6CTA7	164	86	_	_	6CTF7	150	79	_	_				9 7/8	

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

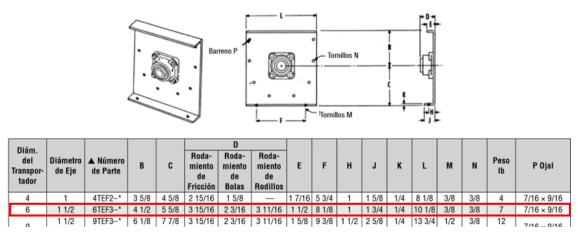
El número de la artesa seleccionada es 6CTA14, La estructura del número de la parte está dada por lo siguiente:


Diámetro del Transportador Helicoidal

Tipo: Artesa con ceja de ángulo

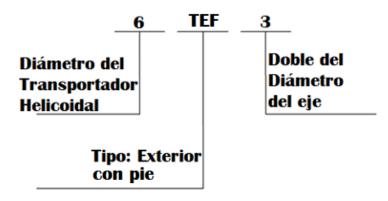
Figura 185. Estructura del código de la artesa seleccionada

Fuente: Elaboración propia


Figura 186. Artesa del sistema de tamizado

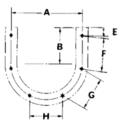
Fuente: Elaboración propia con base en: Solid Edge ST10

3.3.3 Selección de las tapas de la artesa. Las tapas de la artesa están ubicadas en los extremos de esta, impidiendo que el material se salga, empleando la siguiente figura se selecciona la tapa para una artesa tipo U sin pie, de acuerdo al diámetro del transportador helicoidal, con las siguientes características y dimensiones.


Figura 187. Tapa de artesa exterior con pie seleccionada

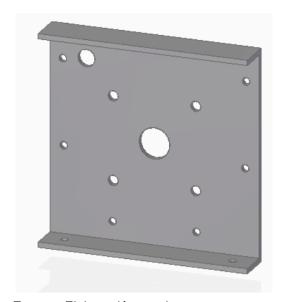
Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

El número de la tapa de artesa seleccionada es 6TEF3, La estructura del número de la parte está dada por lo siguiente:


Figura 188. Estructura del código de la tapa de la artesa

Fuente: Elaboración propia

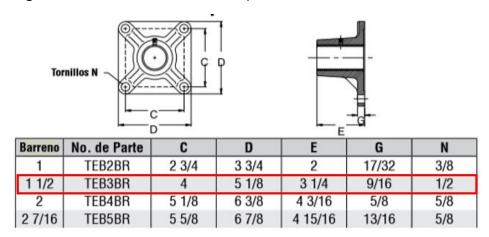
El patrón de los barrenos de la artesa, se determina a través de la siguiente figura, teniendo en cuenta el diámetro del transportador helicoidal, siendo el mismo patrón para las tapas.


Figura 189. Patrón de barrenos

Diámetro del	Torn	illos	Λ	ь	_	-	c	ш
Helicoidal	Número	Diámetro	^	B			ď	
4	6	3/8	7	3 5/8	1 1/8	3 1/8	3 1/8	3 1/8
6	6	3/8	8 7/8	4 1/2	1 1/32	4 1/8	4 1/16	4 1/16
9	8	3/8	12 1/2	6 1/8	1 3/16	4 1/8	3 3/4	5 1/8

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Figura 190. Tapa de artesa del sistema de tamizado



Fuente: Elaboración propia

La tapa de la artesa tendrá un agujero adicional en la parte superior, ya que por ahí ingresará el tubo dispensador de agua al sistema de tamizado, su ubicación y dimensionamiento se encuentra en el Anexo A, Plano 32.

3.3.4 Selección de rodamientos en la tapa de la artesa. La selección de rodamientos en la tapa de la artesa se determina teniendo en cuenta el diámetro del eje, lo cual sería el barreno, es decir, el tamaño del agujero del rodamiento, se selecciona rodamientos de bola con soporte de pared, con el siguiente dimensionamiento.

Figura 191. Rodamientos de bola en tapa seleccionado

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

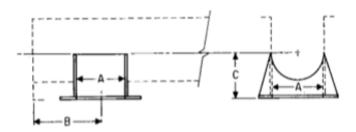

http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Figura 192. Rodamiento de la tapa de artesa sistema de tamizado

Fuente: Elaboración propia

3.3.5 Selección de la descarga. La descarga es por donde sale el afrecho el cual es el subproducto del sistema de tamizado, se selecciona una descarga estándar sencilla y sus dimensiones son acordes al diámetro del transportador helicoidal, se determinan empleando la siguiente figura.

Figura 193. Descarga estándar sencilla dimensionamiento

Diám. del Transportador	Α	В	С
4	5	4 1/2	3 3/4
6	7	6	5
9	10	8	7 1/8

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20 helicoidales/seccion%20h%20-%20helicoidales.pdf

El número de la parte de la descarga y el peso de la misma, se determina teniendo en cuenta el diámetro del transportador helicoidal, a través de la siguiente figura.

Figura 194. Estructura del código de la descarga y peso Lb

n:/		Espesor de la		Número de Parte		Peso Ib			
Diámetro del Transportador	Espesor de la Artesa, Calibre	Descaga y de la	Descar	ga Estándar	Descarga a Tapa	Descarg	Descarga a		
transportation	Artesa, Gambre	Compuerta, Calibre	Sencilla	Con Compuerta	Final	Sencilla	Con Compuerta	Tapa Final	
	16 – 14	□ 14	4TSD14	4TSDS14	4TSDF14	2	6	1.5	
4	12	12	4TSD12	4TSDS12	4TSDF12	3	7	2.25	
e	14 - 12	□ 14	6TSD14	6TSDS14	6TSDF14	4	11	3.0	
0	3/16	12	6TSD12	6TSDS12	6TSDF12	6	13	4.50	

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Figura 195. Descarga del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge

3.3.6 Diseño del recolector de almidón húmedo de Sagú. Este recolector es el encargado de recibir el almidón húmedo de Sagú o lechada que va siendo tamizado de la parte fibrosa anteriormente rallada de tubérculos, está ubicado debajo de la artesa perforada, se ensambla por medio de tornillos a la estructura y cuenta con un desagüe, por donde el almidón húmedo se dirige a un tanque de almacenamiento, su material es acero inoxidable 304 ya que entrara en contacto directo con el almidón húmedo, sus dimensiones y características se indican en el Anexo A, Plano 35.

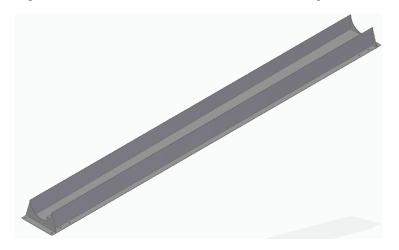
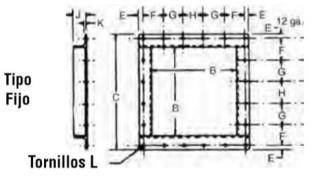


Figura 196. Recolector de Almidón Húmedo de Sagú

Fuente: Elaboración propia con base en: Solid Edge

3.3.7 Dimensionamiento del acrílico que cubre la artesa. El acrílico que cubre la artesa se implementa para evitar contaminantes en el proceso y riesgos laborales, por parte de los operadores, ya que el transportador helicoidal estará en constante movimiento rotacional, se diseña acorde a la artesa anteriormente seleccionada, sus características y dimensiones se encuentran en el Anexo A, Plano 34.


Figura 197. Acrílico cubre artesa del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge

3.3.8 Selección de entrada del material. La entrada del material, se tendrá en cuenta para el dimensionamiento de la tolva de alimentación, está ubicada en la parte superior de la artesa, y es por donde ingresara el material para empezar el proceso de tamizado.

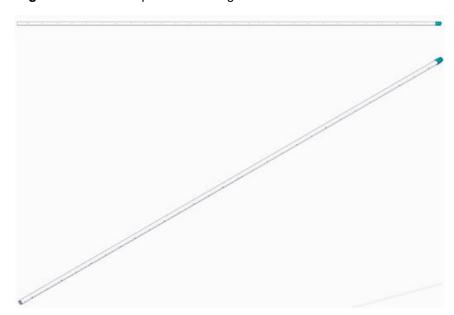
Se selecciona empleando la siguiente figura, donde se encuentran su dimensionamiento, de acuerdo al diámetro del transportador helicoidal.

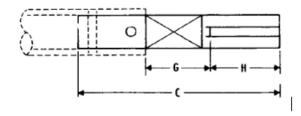
Figura 198. Dimensionamiento de la entrada del material

Diámetro	Número	de Parte	B			C		E	1					1
del Trans- portador	Entrada Fija	Entrada Des- montable	Peso (lb)	В	Entrada Fija	Entrada Desmontable	Entrada Fija	Entrada Desmontable	F	G	Н	J	K	L
4	4CIF	4CID	1.8	5	7 1/2	7 1/2	3/8	3/8	2 1/4	-	2 1/4	1 1/4	3/16	1/4
6	6CIF	6CID	5.0	7	10	10	11/16	11/16	2 13/16	_	3	1 1/2	3/16	3/8
9	9CIF	9CID	6.8	10	13	13	1/2	1/2	4	_	4	1 1/2	3/16	3/8

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/doc_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

3.3.9 Tubo dispensador de agua. Este tubo de PVC es el encargado de transportar y dosificar el agua al sistema de tamizado, es necesario tener un suministro de agua en esta etapa de la máquina, ya que a medida que el transportador helicoidal va compactando la masa rallada de tubérculos, el agua ayudara a humedecerla y limpiarla, para que se desprenda más almidón del afrecho. no es necesario contar con una presión del agua, ya que se requiere que simplemente la humedezca por tal motivo este tubo ira conectado directamente a la fuente de agua donde se ubique, en su otro extremo a un tapón de PVC normalizado de ½ pulgada, contara con una cantidad de agujeros para que cumpla su función, se ubicara dentro sistema de tamizado, ensamblado en una de las paredes de la artesa por medio de dos platinas y tornillos, su diámetro normalizado es de ½ pulgada, para ver más detalladamente sus dimensiones y características, remítase al Anexo A, Plano 36.




Figura 199. Tubo dispensador de agua del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.3.10 Selección de ejes del sistema de tamizado. El sistema de tamizado contara con dos ejes en cada extremo del transportador helicoidal, un eje motriz el cual se encarga de transmitir la potencia del motor al transportador y un eje terminal el cual se encarga de soportar el transportador, estos ejes se ubican en el interior de los rodamientos de pared en las tapas de la artesa.

3.3.10.1 Eje motriz. Este eje se selecciona de acuerdo al diámetro del eje del transportador helicoidal seleccionado en la <u>Figura 177</u>, el cual es de 1 ½ pulgada y de acuerdo al tipo de rodamiento de pared seleccionado el cual es de bolas, a continuación, se muestran las dimensiones del eje motriz.

Figura 200. Dimensionamiento del eje motriz seleccionado

	Rodamiento de Bolas										
Diámetro del Eje	No. de C G		Н	Peso (lb)							
1	1CD2BB	9	3	3	1.8						
1 1/2	1CD3BB	11 1/2	31/2	3 1/4	5.6						
2	1CD4BB	13 1/8	37/8	4 1/2	11.5						

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

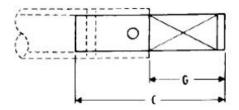

http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportador es%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Figura 201. Eje motriz del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge

3.3.10.2 Eje Terminal. Este eje se selecciona de acuerdo al diámetro del eje del transportador helicoidal seleccionado en la <u>Figura 177</u>, el cual es de 1 ½ pulgada y de acuerdo al tipo de rodamiento de pared seleccionado el cual es de bolas, a continuación, se muestran las dimensiones del eje terminal.

Figura 202. Dimensionamiento del eje terminal seleccionado

	Rodamiento de Bolas										
Diámetro de Eje	No. de Parte*	С	G	Peso (lb)							
1	CE2BB	6	3	1.2							
1 1/2	CE3BB	8 1/4	3 1/2	3.8							
2	CE4BB	8 5/8	3 7/8	7.5							

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Figura 203. Eje terminal del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge

3.3.11 Deflexión del Transportador Helicoidal. La deflexión en los transportadores helicoidales de medidas estandarizadas, normalmente no se presentan⁷⁵, sin embargo, es necesario verificar si se produce una deflexión significativa, que pueda ocasionar daños de los componentes y fallas en el proceso, empleando la siguiente ecuación se determina la deflexión:

Ecuación 91. Deflexión del transportador helicoidal

$$D = \frac{5 * W * L^3}{384 * 29000000 * I}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Donde:

D, Deflexión del transportador helicoidal in

W, Peso total del transportador helicoidal Lb

L, Longitud del transportador helicoidal in

I, Momento de inercia del tubo del transportador helicoidal $Lb * in^2$

El peso total del transportador helicoidal se obtiene por medio de la tabla #, donde el peso por cada pie, es de 6 Lb, sabiendo que la longitud del transportador helicoidal estipulada es de 1.5 m o 5 pies. Se procede a determinar el peso total del transportador.

$$W = 6\frac{Lb}{pie} * 10 pies = 60 Lb$$

⁷⁵ MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

El tubo seleccionado de acuerdo al número del transportador helicoidal de la <u>Figura</u> <u>177</u>, es de cedula 40, y de diámetro de 2 pulgadas, por lo tanto, tendrá el siguiente momento de inercia.

Figura 204. Inercia del transportador helicoidal

	Tubo Cédula 40										
Tamaño de Tubo	2"	2 1/2"	3"	3 1/2"	4"	5"	6"	8"	10"		
- 1	.666	1.53	3.02	4.79	7.23	15.2	28.1	72.5	161		

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Remplazando los valores en la ecuación se obtiene:

$$D = \frac{5*60 Lb*\left(10 pies*\left(\frac{12 in}{1 pie}\right)\right)^{3}}{384*29000000*0.666 Lb*in^{2}}$$

$$D = 0.07 in$$

Según la Norma CEMA⁷⁶, en aplicaciones donde la deflexión exceda 0.25 in, se recomienda consultar al departamento de ingeniería del fabricante, o alguna sugerencias para resolver el problema de la deflexión, es aumentar el espesor de la pared del tubo del transportador helicoidal o un tubo con mayor diámetro.

Como se observa la deflexión cumple con el rango de deflexión permitida, por lo tanto, no presentara falla.

$$0.07 \ in \leq 0.25 \ in$$

3.3.12 Potencia requerida del transportador helicoidal. La potencia necesaria para mover el transportador helicoidal, involucra la potencia para vencer la fricción y la potencia para mover el material con una densidad y capacidad específica,

⁷⁶ MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

teniendo en cuenta las sobre cargas⁷⁷ y demás factores, que se determinaran a continuación a partir de las siguientes ecuaciones:

Ecuación 92. Potencia para mover el transportador vacío

$$HP_f = \frac{L * N * F_d * f_b}{1000000}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Ecuación 93. Potencia para mover el material

$$HP_m = \frac{C * L * W * F_f * F_m * F_p}{1000000}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Ecuación 94. Potencia total

$$HP_{Total} = \frac{\left(HP_f + HP_m\right) * F_o}{e}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Donde:

 HP_f , Potencia necesaria para mover el transportador helicoidal vacío HP

L, Longitud del transportador helicoidal ft

N, Velocidad del transportador helicoidal RPM

 F_d , Factor del diámetro del transportador *Adimensional*

 f_b , Factor del buje para colgante *Adimensional*

 HP_m , Potencia necesaria para mover el material HP

C, Capacidad del transportador $\frac{ft^3}{h}$

W, Densidad del material $\frac{Lb}{ft^3}$

F_f, Factor del helicoidal Adimensional

 F_m , Factor del material Adimensional

 F_p , Factor de las paletas *Adimensional*

 HP_{Total} , Potencia total HP

 F_o , Factor de sobrecarga Adimensional

e, Eficiencia de la transmisión Adimensional

El factor del diámetro del transportador helicoidal, se selecciona con respecto al diámetro anteriormente seleccionado en la <u>Figura 172</u>, de 6 pulgadas y se obtiene de la siguiente tabla.

Tabla 18. Factor del diámetro del transportador

Factor del Diámetro del Transportador, F _d Diámetro del Helicoidal (Pulgadas) 4 12.0 6 18.0 9 31.0 10 37.0 12 55.0 14 78.0					
Diámetro del Helicoidal (Pulgadas)	Factor F _d				
4	12.0				
6	18.0				
9	31.0				
10	37.0				
12	55.0				
14	78.0				
16	106.0				
18	135.0				
20	165.0				
24	235.0				
30	365.0				
36	540.0				

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_tra nsportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Los rodamientos que se utilizarán en el sistema de tamizado serán rodamientos de bolas teniendo en cuenta esto se selecciona el factor del buje para colgante a través de la siguiente tabla.

Tabla 19. Factor del buje para colgante

	Factor del Buje para C	olgante
	Tipo de Buje	Factor del Buje para Colgante F _b
В	Rodamiento de Bolas	1.0
L	Marlin Bronce	
	* Bronce Grafitado	
	* Bronce, Impregnado en Aceite	
	* Madera, Impregnado en Aceite	
	* Nylatron	
s	* Nylon	2.0
8	* Teflón	2.0
	* UHMW	
	* Melamine (MCB)	
	* Ertalyte® Quadrent	
	* Uretano	
	* Martin Hierro Endurecido*	3.4
	* Superficie Endurecida	
Н	* Stellite	4.4
	* Cerámico	4.4
	* Aleación de Hierro Blanco	

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Remplazando los valores en la <u>Ecuación 91</u>, de la potencia necesaria para mover el transportador helicoidal vacío, se obtiene lo siguiente:

$$HP_f = \frac{1.5 \ m * \left(\frac{1 \ in}{0.0254 \ m}\right) * 20 \ RPM * 18 * 1}{10000000}$$

$$HP_f = 0.021 \ HP$$

La capacidad del transportador helicoidal se determinó anteriormente en la sección 3.3.1.2 siendo de:

$$C_{Req} = 31 \, \frac{ft^3}{h}$$

La densidad el material es de $50 \frac{Lb}{ft^3}$

Para determinar el factor del helicoidal se selecciona un helicoidal estándar para el diseño del sistema de tamizado, anteriormente en la <u>Figura 172</u>, se estipulo un llenado de artesa del 30%, por lo tanto, el factor del helicoidal se obtiene a través de la siguiente tabla:

Tabla 20. Factor del helicoidal Ff

Factor F _f										
Tipo de Helicoidal		F∉Factor por porcentaje de carga de transportador								
	15%	30%	45%	95%						
Estándar	1.0	1.0	1.0	1.0						
Helicoidal con Corte	1.10	1.15	1.20	1.3						
Con Corte y Doblez	N.R.*	1.50	1.70	2.20						
Helicoidal de Listón	1.05	1.14	1.20	_						

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

El factor del material se obtiene de las tablas planteadas por el manual donde se tienen códigos de materiales estipulados, de acuerdo a lo mencionado anteriormente, no se tiene un código estipulado del material en estas tablas, por lo tanto, para determinar este factor es necesario, trabajar con un código con características similares, para selecciones anteriores se estableció trabajar con el coco en trozos, ya que este posee un código y características parecidas al rallado de tubérculo de Sagú, su factor del material se encuentra empleando la <u>Figura 173</u>, el cual es de 1.5.

El factor de las paletas, se determina empleando la siguiente tabla.

Tabla 21. Factor de paleta Fp

Factor de Paleta F _p									
Paletas Estándar por Paso. Paletas Ajustadas a 45° Paso Invertido									
Número de Paletas por Paso	0	1	2	3	4				
Factor de Paleta – Fp	1.0	1.29	1.58	1.87	2.16				

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoi dales/seccion%20h%20-%20helicoidales.pdf

Como en el diseño del transportador helicoidal no se hará uso de paletas se selecciona cero.

Remplazando los valores en la <u>Ecuación 92</u>, de la potencia necesaria para mover el material, se obtiene lo siguiente:

$$HP_m = \frac{31 \frac{ft^3}{h} * 1.5 m * \left(\frac{1 in}{0.0254 m}\right) * 50 \frac{Lb}{ft^3} * 1 * 1.5 * 1}{10000000}$$

$$HP_m = 0.14 HP$$

El factor de sobrecarga se obtiene teniendo en cuenta la sumatoria de la potencia necesaria para mover el transportador helicoidal vacío y la potencia necesaria para mover el material.

$$HP_f + HP_m = 0.021 HP + 0.14 HP = 0.2 HP$$

Empleando la siguiente tabla.

F_O - Factor de Sobrecarga

3.0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.0
0.2
0.3
0.4
0.5
0.8
0.8
1.0
Potencia HP₁ + HP_m
Si (HP₁ + HP_m) > 5.2, entonces F_o = 1.0
Encuentre el valor de (HP₁ + HP_m), suba verticalmente hasta la línea diagonal y lea el valor de F_o a la izquierda.

Tabla 22. Factor de sobrecarga

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

El factor de sobrecarga obtenido es de 3.

La eficiencia de la transmisión se obtiene teniendo en cuenta cual será la forma de transmisión de potencia del sistema de tamizado, para el diseño se realizará por medio un motor reductor con acople, por lo tanto, empleando la siguiente figura se determina la eficiencia:

Tabla 23. Factor de eficiencia de las transmisiones

Factor de Eficiencia (e) de las Transmisiones									
Transmisión para Transportador Helicoidal o Montado en Eje con Transmisión de Bandas en "V"	Reductor de Engranes Helicoidales con Transmisión de Bandas en V y Cople	Motorreductor con Cople	Motorreductor con Transmisión de Cadena	Corona Sinfín					
.88	.87	.95	.87	Consulte a Martin					

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Remplazando los valores en la <u>Ecuación 93</u>, de la potencia total, se obtiene lo siguiente:

$$HP_{Total} = \frac{(0.021 \, HP + 0.14 \, HP) * 3}{0.95}$$

$$HP_{Total} = 0.6 HP$$

La potencia requerida es de 0.6 HP, se implementará un motor de 1.0 HP.

3.3.12.1 Selección del Motor Reductor. Se procede a seleccionar el motor reductor que transmitirá potencia al transportador helicoidal, para eso es necesario cumplir con los siguientes parámetros:

- La potencia del motor es de 1.0 HP
- Las revoluciones por minuto del transportador helicoidal o de salida 20 RPM
- Torque necesario para mover el transportador helicoidal

El torque necesario para mover el transportador helicoidal, se determina empleando la siguiente ecuación:

Ecuación 95. Torque del transportador helicoidal

$$T = \frac{63025 * HP}{n}$$

Fuente: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en:

http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales/seccion%20h%20-%20helicoidales.pdf

Donde:

T, Torque Lb * in

HP, Potencia HP

n, Velocidad del transportador helicoidal RPM

Remplazando los valores en la ecuación, se obtiene:

$$T = \frac{63025 * 1.0 \, HP}{20 \, RPM}$$

$$T = 3100 \, lb * in$$

Según el Catalogo de Martin Sprocket and Gear⁷⁸, el componente que tenga menor capacidad torsional es aquel que determinara cual es el torque mínimo que puede ser soportado por el conjunto, dependiendo el diámetro del transportador helicoidal seleccionado, se emplea la siguiente figura.

Figura 205. Torque de los componentes del transportador helicoidal

	Tu	bo	Ej	es				Per	nos		
Diámetro	Cédu	ıla 40	Torque (Ib-Pulgadas)*		Diámetro	Pernos al	Corte (lb-Pu	lgadas) ▲	Resistencia de los Barrenos (Ib-Pulgadas)		
del Eje (Pulgadas)	Tamaño Torque (Pulgadas) (lb-Pulgada		C 1018	C 1045	del Perno (Pulgadas)	١	No. de Perno	s	N	lo. de Perno	s
	, , ,	Т3	T ₄	T ₅		1	2	3	1	2	3
1	1 1/4	3,140	820	1,025	3/8	690	1,380	2,070	985	1,970	2,955
1 1/2	2	7,500	3,070	3,850	1/2	1,830	3,660	5,490	2,500	5,000	7,500
2	2 1/2	14,250	7,600	9,500	5/8	3,800	7,600	11,400	3,930	7,860	11,790
2 7/16	3	23,100	15,030	18,780	5/8	4,635	9,270	13,900	5,820	11,640	17,460
3	3 1/2	32,100	28,350	35,440	3/4	8,200	16,400	24,600	7,770	15,540	23,310
3	4	43,000	28,350	35,440	3/4	8,200	16,400	24,600	12,500	25,000	37,500
3 7/16	4	43,300	42,470	53,080	7/8	12,800	25,600	38,400	10,900	21,800	32,700
3 15/16	5	65,100	61,190	76,485	1 1/8	24,270	48,540	72,810	26,060	52,120	78,180
4 7/16	6	101,160	88,212	110,265	1 1/4	33,760	67,520	101,280	45,375	90,750	136,125

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoi dales/seccion%20h%20-%20helicoidales.pdf

Donde la menor capacidad torsional está en los pernos con 3660 Lb*in, por lo tanto, se tiene que cumplir, que el torque determinado en la ecuación #, sea menor que el del elemento con menor capacidad torsional.

$$T < 3660 Lb * in$$
 $3100 lb * in < 3660 Lb * in$

⁷⁸ MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2_transportadores%20helicoidales.pdf

Por lo tanto, es adecuado, el diseño del transportador helicoidal.

Sabiendo los parámetros requeridos del motor reductor, se procede a seleccionar empleando el "catálogo de motores NORD"⁷⁹, el cual para una selección adecuada recomienda establecer un factor de servicio, dependiendo de la aplicación para la cual se utilizara el motor, a partir de las siguientes tablas, basadas en la "norma AGMA Standard 6013-A06"⁸⁰.

Figura 206. Aplicaciones de motores

	Loa	d Dura	tion
Application	Up to 3 hrs per day	3-10 hrs per day	Over 10 hrs per day
AGITATORS (mixers)			
Pure Liquids	I	I	II
Liquids and Solids	I	II	II
Liquids – Variable Density	I	II	II
BLOWERS			
Centrifugal	I	I	II
Lobe	I	II	II
Vane	I	II	II
CONVEYORS - GENERAL PURPO	SE		
Includes Apron, Assemble, Belt, Bucket, Chain, Flight, Oven &			
Screw - Uniformly loaded or Fed	1	I	II
Heavy Duty – Not Uniformly Fed	I	II	II
Severe Duty – Reciprocating or Shaker	II	III	III

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US_G 1013 Nordbloc Catalog 2719.pdf

⁷⁹ NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US_G1013_Nordbloc_Catalog_2719.pdf

⁸⁰ lbíd. p.48

Figura 207. Factor de servicio de motor reductores

Class Numbers	f _B
I	1.0 - 1.39
II	1.4 - 1.99
III	≥ 2.0

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US G1013 Nordbloc Catalog 2719.pdf

El factor de servicio según la aplicación, corresponde a un rango de 1.0 – 1.39.

A continuación, se selecciona el motor reductor adecuado según los parámetros establecidos.

Figura 208. Especificaciones del motor reductor seleccionado sistema de tamizado

Motor Power	Output Speed	Output Torque	Service Factor	AGMA Class	Gear Ratio	Standard Bearings		Heavy Duty Bearings (VL)		Model Type	Weight	Dim. Page
P _n	n ₂	T ₂	f _B		i _{tot}	F _{RN} OHL [lb]	F _{AN} Thrust [lb]	F _{RVL} OHL [lb]	F _{AVL} Thrust [lb]	pe	(dl)	
1.0	13	4969	0.8		136.40	1290	3260	2473	3260	SK 573.1 - 80 LP/4	56	158
1.0	14	4570	0.9		125.45	1456	3260	2473	3260	01(070.1 ° 00 E174	30	100
	16	4057	1.0	- 1	111.36	1658	3260	2473	3260			
	16	3975	1.0	1	109.12	1689	3260	2473	3260			
	16	3913	1.0	- 1	107.42	1732	3260	2473	3260			
	18	3443	1.2	1	94.50	1904	3260	2473	3260			
	20	3103	1.3	- 1	85.18	2023	3260	2473	3260			
	23	2801	1.4	II	76.88	2113	3260	2473	3260			
	26	2464	1.6	H	67.64	2181	3260	2473	3260			
	28	2221	1.8	II	60.97	2200	3260	2473	3260			
	35	1807	2.2	III	49.60	2229	3260	2473	3260			
	36	1747	2.3	III	47.95	2233	3260	2473	3260			

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.nord.com/cms/media/documents/bw/US_G1013_Nordbloc_Catalog_2719.pdf

Se selecciona un motor reductor, SK 573.1 – 80 LP/4, sus dimensiones y caracteristicas se encuentran en el Anexo E.

3.3.12.2 Selección del Acople. El motor reductor tendrá que estar unido al transportador helicoidal por medio de un acople, el cual permitirá la correcta transmisión de potencia.

De acuerdo a las dimensiones del motor, en el Anexo E, se observa que el diámetro del eje es de 1.25 in y su respectivo cuñero es de ¼ in y en la sección 3.3.10.1, el

diámetro del eje motriz es de 1½ in y su cuñero es de 3/8 in, teniendo en cuenta los diámetros y cuñeros, se procede a seleccionar el acople.

SPC-24-20-F K1, K2 ØOD ØB1 DIMENSIONES Diámetro (B1) 1.500 en Diámetro pequeño (B2) 1.250 en Chavetero (K1) Chavetero (K2) 3/8 pulgadas 1/4 pulg. Penetración del eje B1 1.937 en Penetración del eje B2 1.937 en Diámetro exterior (OD) 2 5/8 pulgadas Longitud (L) 3 7/8 pulgadas

Figura 209. Especificaciones del acople de transmisión de potencia seleccionado

Fuente: RULAND. Acople rígido SPC-24-20-F. [Sitio web]. [consultado el 19 abril, de 2020]. Disponible en: https://www.ruland.com/spc-24-24-f.html

Se selecciona un acople SPC-24-20-F, el cual cumple con los requerimientos.

3.3.13 Dimensionamiento y cálculos de la tolva de alimentación. La tolva de alimentación es por donde ingresaran los tubérculos de Sagú rallados en la etapa de tamizado, esta operación se realiza de forma continua proveniente de la salida del sistema de rallado a la entrada del sistema de tamizado, por lo tanto, es necesario realizar el dimensionamiento que cumpla con los requerimientos determinados.

Figura 210. Tolva del sistema de tamizado

Fuente: Elaboración propia

3.3.13.1 Calculo del volumen requerido de la tolva. Para realizar el cálculo determinado del volumen se procede a utilizar la ecuación general de volumen.

Ecuación 96. Volumen tubérculos rallados de Sagú

$$V_T = rac{m_{sag\acute{u}}}{
ho}$$

Fuente: Elaboración propia con base en: MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p. ISBN: 9688805424

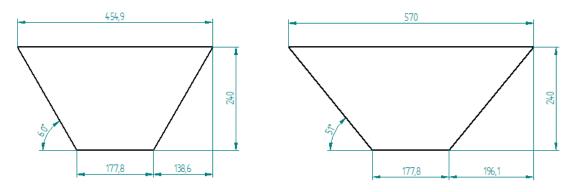
Donde:

 V_T , Volumen de la tolva de alimentación m^3 $m_{sag\acute{\mathrm{u}}}$, Masa de tubérculos rallados de Sagú Kg ρ , Densidad del tubérculo rallado de Sagú Kg/m^3

La tolva de alimentación se diseñará asumiendo que cae una cantidad de carga máxima de 25 Kg de tubérculos de Sagú rallados, como se indicó anteriormente estará en un continuo proceso de salida de la etapa de rallado y entrada a la etapa de tamizado, sabiendo que las revoluciones por minuto de la ralladora son altas, se efectuará un rallado rápido, sin embargo, la entrada de material en la tolva será menor que la cantidad estipulada.

Teniendo la densidad del tubérculo rallado de Sagú de $0.86~Kg/m^3$, se procede a determinar el volumen requerido para la tolva de alimentación, remplazando los valores se obtiene:

$$V_T = \frac{25 \, Kg}{0.86 \, Kg/m^3}$$


$$V_T = 0.031 \, m^3$$

3.3.13.2 Ángulo de inclinación de la tolva. Para el ángulo de inclinación de la tolva de alimentación, se tomó como referencia prototipos realizados por CORPOICA, en donde se experimentaron con prototipos con una inclinación de tolva de 45° y 60° con respecto a la horizontal⁸¹, en el material acero inoxidable, por lo tanto se tomará el ángulo mayor de 60° para los cálculos pertinentes, y así evitar que la masa rallada tienda a reposar sobre las paredes de la tolva.

3.3.13.3 Dimensiones de la tolva. Se procede a calcular las dimensiones generales de la tolva de alimentación, tomando como referencia el requerimiento estipulado del volumen calculado anteriormente.

Para el volumen de 0.031 m^3 , se necesitan unas dimensiones generales de:

Figura 211. Dimensiones generales de la tolva de alimentación sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST10

⁸¹ CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

Estas dimensiones se realizaron aproximando un dimensionamiento acorde para la máquina, y a su vez con el volumen solicitado.

Se empleara acero inoxidable 304 grado alimenticio, ya que el producto que será introducido en la tolva son masa rallado de tubérculos de Sagú, se selecciona el espesor que tendrá la lámina, el cual es "calibre 12 o 2.670 mm"⁸² y se realizaran los respectivos cálculos, para determinar si este espesor es el adecuado.

3.3.13.4 Cálculo real del volumen de la tolva. Se procede a remplazar las dimensiones establecidas en la ecuación "volumen de un tronco pirámide regular" para corroborar si estas son las indicadas para obtener el volumen requerido.

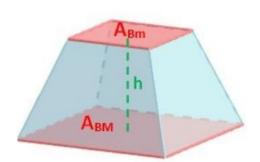


Figura 212. Tronco pirámide regular

Fuente: UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-troncopiramide/

La tolva de almacenamiento del sistema de tamizado, contará con las mismas ecuaciones utilizadas en la tolva de almacenamiento del sistema de lavado y rallado, por lo tanto, se empleará la Ecuación 4, para calcular el volumen real de la tolva, con la diferencia que en este tipo de tolva el material tendrá contacto con las 4 paredes.

Remplazando los valores en la ecuación de obtiene:

⁸²LA PALOMA. Tabla de calibres. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.lapaloma.com.mx/lapaloma_metales/calibres.html

⁸³ UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

$$V_r = \frac{0.24 \, m}{3} * \left((0.57 \, m * 0.4549 \, m) + (0.1778 \, m * 0.1778 \, m) \right. + \sqrt{(0.57 \, m * 0.4549 \, m) * (0.1778 \, m * 0.1778 \, m)} \right)$$

$$V_r = 0.031 \, m^3$$

Con el fin de comprobar las dimensiones establecidas se utiliza el software de diseño Solid Edge, el cual genera el volumen de la tolva más exactamente, evidenciando que las dimensiones cumplen con dicho volumen.

Figura 213 Volumen de la tolva de alimentación Solid Edge

Fuente: Elaboración propia con base en: Solid Edge ST10

3.3.13.5 Cálculo del área de contacto rallado de tubérculos de Sagú-tolva. Para saber cuál es el área de contacto que el rallado de tubérculos de Sagú ocupan en la tolva, se procede a calcular con la <u>Ecuación 5</u>, utilizada en las tolvas de alimentación de los anteriores sistemas de la máquina, ya que esta área se determina igualmente, teniendo como diferencia que el rallado de Sagú estará en contacto con las cuatro caras de la tolva de alimentación, en donde dos de sus caras laterales tienen dimensiones iguales y sus caras frontales y posteriores también, las dimensiones de estas caras se encuentran en la <u>Figura 211</u>.

Remplazando los valores en la ecuación se obtiene:

$$A_c = \frac{0.4549 \ m * 0.1778 \ m}{2} * 0.2771 \ m$$

$$A_c = 0.011 \ m^2$$

$$A_c = \frac{0.57 \ m * 0.1778 \ m}{2} * 0.3099 \ m$$

$$A_c = 0.016 \ m^2$$

3.3.13.6 Cálculo de la fuerza ejercida sobre la tolva. La carga de rallado de Sagú que está en la tolva de alimentación, genera una fuerza sobre las áreas de contacto anteriormente calculadas, por lo tanto, se procede a utilizar la <u>Ecuación 6</u>.

Remplazando los valores en la ecuación se obtiene:

$$Furza = 25 kg * 9.8 m/s^{2}$$

$$Fuerza = 245 N$$

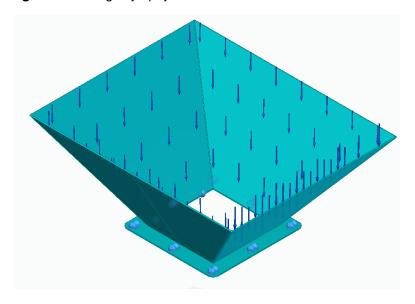
Esta fuerza será dividida entre las cuatro caras de la tolva por lo tanto cada área de contacto o cara, estará sometida a la siguiente fuerza:

$$Fuerza = \frac{245 N}{4}$$

$$Fuerza = 61.25 N$$

3.3.13.7 Análisis de la tolva con Software Solid Edge ST10. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si la tolva de alimentación con las dimensiones y el material establecidos, soporta la carga de rallado de sagú anteriormente calculada, sobre las diferentes áreas de contacto.

Se realiza el siguiente tipo de mallado para la simulación en el software:


Figura 214. Información del tipo de malla para la respectiva simulación

Tipo de mallado	Tetraédrico
Número total de cuerpos mallados	1
Número total de elementos	32.066
Número total de nodos	64.899
Tamaño subjetivo de malla (1-10)	8

Fuente: Elaboración propia con base en: Solid Edge ST10

Se ubica la carga anteriormente calculada, y se asumen apoyos fijos en la platina de apoyo.

Figura 215. Cargas y apoyos en la tolva sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST10

3.3.13.7.1 Desplazamiento en la tolva. Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la tolva de alimentación es de 0.0985 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

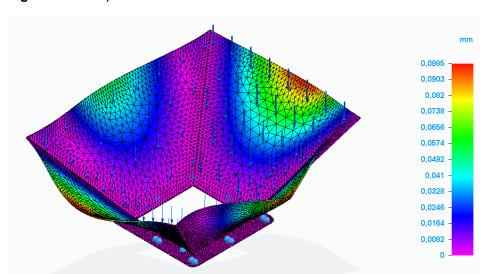


Figura 216. Desplazamiento de la tolva sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

3.3.13.7.2 Tensión en la tolva. El esfuerzo Von Misses de la tolva de alimentación esta entre 7.62x10-14 MPa a 8.02 MPa lo que quiere decir que está alejado del límite elástico del material empleado que es 255 MPa, indicando que el diseño de la tolva es conveniente para una carga de rallado de tubérculos de Sagú de 25 kg.

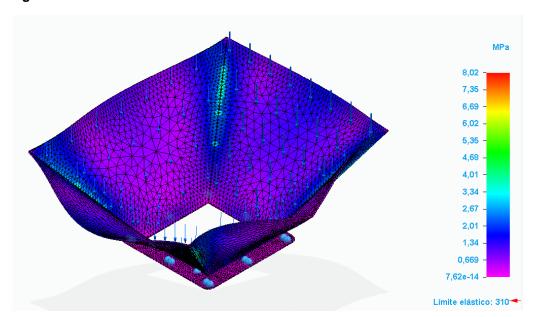


Figura 217. Tensión de Von Misses en la tolva sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

Factor de seguridad en la tolva. Se evidencia que el factor de seguridad mínimo es 38.7 es decir que las dimensiones calculadas y estipuladas anteriormente para la tolva de alimentación son las correctas.

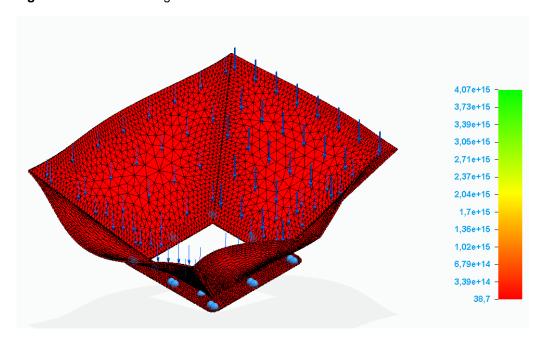


Figura 218. Factor de seguridad de la tolva sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

3.3.14 Diseño estructural del sistema de tamizado. La estructura es la encargada de soportar todos los componentes que conforman el sistema de tamizado, por lo tanto, tendrá que ser capaz de soportar el peso de estos, se realizara el análisis a los elementos más críticos de la estructura, es decir, aquellos que soportan la mayor carga.

En el sistema estructural hay dos vigas críticas y cuatro columnas críticas, se analizarán las que tengan que soportar la mayor carga, una de estas vigas soporta La carga del peso de la tolva de alimentación, artesa, rallado de sagú, tubo de agua y descarga y la otra viga critica soporta la carga del peso de las tapas de la artesa, rodamientos y el transportador helicoidal.

Se procede a realizar una tabla indicando el valor del peso del elemento, con ayuda de software Solid Edge St10 y dirigiendo al lector a las diferentes Figuras donde los pesos de elementos seleccionados ya están estipulados.

Cuadro 18. Elementos que soportan las vigas críticas.

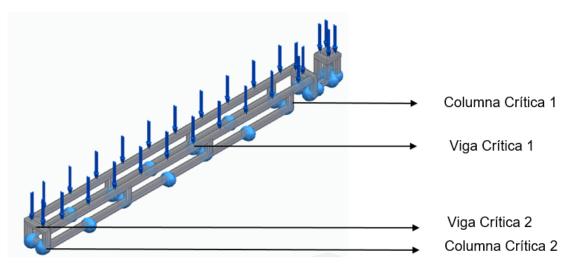
Elemento estructural critico	Elemento	Solid Edge ST10 o Figura	Peso (Kg)	Tota I (Kg)
	Tolva	Masix	9.26	
	Rallado de Sagú	N/A	25	
	Artesa	<u>Figura 186</u>	35.4	
Viga critica 1	Tubo de agua	Masix	0.9	94
	Recolector de almidón	Global Principales Area de superficie: 21609 kg 2682023 561 mm² 2246225.64 mm 2 2246225.64 mm 2 224625.64 mm 2 224625.64 mm 2 224625.64 mm 2 24625.64 mm 2 256.46 mm 2 266.46 mm	21.6	
	Descarga	<u>Figura 196</u>	1.8	
Viga critica 2	Tapas de artesa	<u>Figura 189</u>	3.2	
	Rodamientos	N/A	2.86	33.3
	Transportador helicoidal	Figura 182		

Fuente: Elaboración propia con base en: Solid Edge ST0

Como se observa el peso de la tolva de alimentación y los tubérculos de Sagú suman más que el peso de los otros elementos por lo tanto se analizará la viga critica 1 y su respectiva columna.

$$m_{TOTAL} = 94 \; Kg$$

Teniendo la siguiente carga total:


$$W_{TOTAL} = m_{TOTAL} * g$$

$$W_{TOTAL} = 94 Kg * 9.8 m/s^{2}$$

$$W_{TOTAL} = 921.2 N$$

3.3.14.1 Diseño de vigas por flexión. Para saber si la estructura propuesta, soportara el peso de los elementos, se procede realizar un análisis en la viga más crítica del sistema, a continuación, se muestra la estructura con las respectivas cargas a la que estará sometida.

Figura 219. Carga en la estructura del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

Como se evidencia se encuentran dos vigas que soportan la misma carga, por lo tanto, la carga total se divide en dos, la viga que se analizara tiene 2991 mm de largo, se procede a realizar el diagrama de cuerpo libre de la viga.

M. 187 N.m.

1.45 m

2.90 m

Figura 220. Diagrama de cuerpo libre de la viga de la estructura del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

Ahora se procede a realizar el diagrama de fuerza cortante y momento flector, con ayuda del software Deflexión.

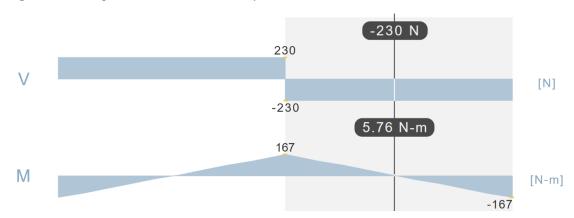


Figura 221. Diagrama de fuerza cortante y momento flector

Fuente: Elaboración propia con base en: Solid Edge ST0

Como se observa la fuerza cortante máxima es de 230 N y el Momento flector máximo es de 5.76 Nm.

El método que se utilizará para el análisis a los elementos de la estructura del sistema de rallado será el mismo que se realizó anteriormente a la estructura del sistema de lavado y rallado, por lo tanto, se emplearán las ecuaciones pertinentes.

De acuerdo a lo especificado en la sección 3.1.10.1, el material de toda la estructura de la máquina es acero estructural A-36, el cual tiene un esfuerzo admisible $\sigma_y = 250 \ MPa$

A partir de la ecuación de esfuerzo normal por flexión <u>Ecuación 37</u>, se procede a despejar el módulo de sección.

Remplazando los datos se obtiene:

$$S = \frac{M}{\sigma}$$

Se asigna un factor de seguridad de FS= 2

$$\sigma = \sigma_y/FS$$

Remplazando los datos se obtiene:

$$S_r = \frac{5.76 \, Nm}{\frac{250 \, Mpa}{2} * \frac{1000000 \, \frac{N}{m^2}}{1 \, MPa}}$$

Donde:

 S_r , Módulo de sección requerido m^3

$$S_r = 5 \times 10^{-8} m^3$$

Es decir se tiene un módulo de sección requerido de $0.05\ cm^3$, con el cual se verifica si el perfil cuadrado 50 X 50 con 4 mm de espesor, estipulado anteriormente como el perfil de la estructura de la máquina en la <u>Figura 97</u>, es el adecuado para el diseño de la estructura.

Donde se cumple:

$$S \ge S_r$$
 $7,79 \ cm^3, \ge 0.05 \ cm^3$

3.3.14.2 Relación de esbeltez y resistencia de diseño. Se procede a verificar que las columnas de la estructura no sufran pandeo, por lo tanto, se emplea la relación de esbeltez y la resistencia de diseño basados en el libro diseño de estructuras de acero de Mc Cormac, y el diseño de elementos sometidos a comprensión.

Se analizará la columna crítica 1 mostrada en la <u>Figura 219</u>, la cual soportará la carga total calculada anteriormente más las vigas de la parte superior.

$$m_{TOTAL} = 94 \ Kg + 33.28 \ Kg$$
 $m_{TOTAL} = 127.28 \ Kg$

La carga total se calcula con la Ecuación 22.

$$W_{TOTAL} = 127.28 \, Kg * 9.8 \, m/s^2$$

$$W_{TOTAL} = 1247.34 \, N$$

Esta carga se divide en cuatro, ya que es el número de columnas que la soportan, siendo 311.83 N el valor de la fuerza a la que estará sometida esta columna.

Se procede a calcular la relación de esbeltez de la columna empleando la <u>Ecuación</u> 38.

El radio de giro se obtiene según el catalogo del perfil seleccionado en la <u>Figura 97</u>, el cual es $1.90 \ cm^2$ y el factor de longitud efectiva se determina a partir de la <u>Tabla 7</u>.

Se toma un valor de K de 0.5 ya que el elemento se encuentra como un empotramiento en ambos extremos.

Remplazando los valores en la <u>Ecuación 38</u>, se obtiene:

$$Re = \frac{0.5 * 0.18402 \, m}{0.019 \, m}$$
$$5 \le 200$$

La relación de esbeltez obtenida es menor que 200 por lo tanto se concluye que no se presenta pandeo en la columna y que el perfil seleccionado anteriormente es el adecuado.

Ahora se procede a determinar el esfuerzo de pandeo crítico, donde se debe saber si se trata con una columna corta o larga, para esto se emplea la Ecuación 39.

Para el acero estructural A-36 se tiene que:

$$\sigma_y = 250 MPa$$

$$E = 200 GPa$$

Remplazando los valores se obtiene:

$$\lambda = \frac{0.5 * 0.18402 m}{\pi * 0.019 m} * \sqrt{\frac{250 X 10^6 Pa}{200 X 10^9 Pa}}$$

$$\lambda = 0.06$$

Si $\lambda \leq 1.5$ Es una columna corta

Si $\lambda \geq 1.5$ Es una columna larga

Debido a que se encuentra en el rango de columna corta se emplea la ecuación para el esfuerzo critico de pandeo <u>Ecuación 40</u>.

Remplazando los valores se obtiene:

$$\sigma_{cr} = (0.658^{0.06^2}) * 250 X 10^6 Pa$$

$$\sigma_{cr} = 249623588 Pa$$

Por lo tanto, la resistencia de diseño de elementos sometidos a compresión se determina por la Ecuación 41.

El Área Gross se obtiene según el catalogo del perfil seleccionado en la Figura 97, el cual es $5.41 \ cm^2$.

Remplazando los valores se obtiene:

$$R_d = 0.9 * \left(5.41 \text{ cm}^2 * \frac{1 \text{ m}^2}{10000 \text{ cm}^2}\right) * 249623588 \text{ Pa}$$

$$R_d = 121542 \text{ N}$$

La resistencia de diseño cumple lo siguiente:

$$R_d \ge P_u$$
 $121542 \ N \ge 311.83 \ N$

Se concluye que la columna soporta la carga y no presenta pandeo, por lo tanto, es adecuada para el diseño.

3.3.14.3 Análisis de la estructura con el Software Solid Edge. A continuación, se procede a verificar por medio de un análisis de elementos finitos con ayuda del software de diseño Solid Edge ST10, si la estructura del sistema de tamizado, con las dimensiones y el material establecidos, soporta la carga anteriormente calculada, con el dimensionamiento estipulado.

3.3.14.3.1 Desplazamiento en la estructura. Se evidencia que el desplazamiento o deformación máxima a la que estará sometida la estructura es de 0.00844 mm lo cual indica que se tiene un desplazamiento mínimo y que el espesor del material utilizado es adecuado.

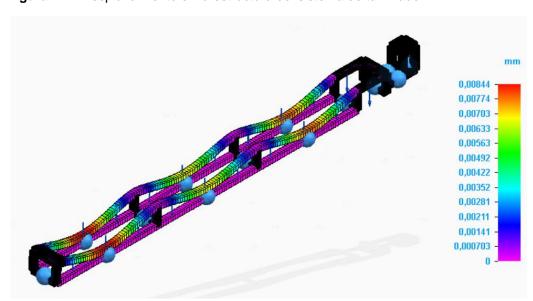


Figura 222. Desplazamiento en la estructura del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

3.3.14.3.2 Tensión en la estructura. El esfuerzo Von Misses de la estructura máximo es de 1.06 MPa lo que quiere decir que está alejado del límite elástico del

material empleado que es 250 MPa, indicando que el diseño de la estructura es conveniente para una carga estipulada.

1,06 0,951 0,846 0,741 0,636 0,531 0,426 0,321 0,216 0,111 0,00612 0,00612 0,0088 0,204

Figura 223. Tensión Von Misses en la estructura del sistema de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

3.3.14.3.3 Factor de seguridad en la estructura. Se evidencia que el factor de seguridad mínimo es 193 es decir que las dimensiones calculadas y estipuladas anteriormente para la estructura son las correctas.

Figura 224. Factor de seguridad de la estructura de tamizado

Fuente: Elaboración propia con base en: Solid Edge ST0

3.3.15 Selección de tornillos. Los componentes del sistema de tamizado que estarán unidos mediante tornillos son, la tolva de alimentación, las tapas de la artesa, los rodamientos de la tapa de la artesa, la cubierta de la artesa, la artesa, la descarga, el recolector de almidón y el motor, se usaran los tornillos seleccionados anteriormente en la sección <u>3.1.12</u>, ya que se realizó el respectivo cálculo y efectivamente serán capaces de soportar las cargas de los elementos del sistema de tamizado ya que son menores que las del sistema de lavado, los rodamientos con soporte que van unidos a la tapa de la artesa, tiene unos tornillos estandarizados según el manual de Martin Sprocket & Gear, los cuales se seleccionan de acuerdo al diámetro del eje del transportador helicoidal.

Figura 225. Tornillos estandarizados de los rodamientos en la tapa

Nombre de la Parte	1	1 1/2	2	2 7/16	3	3 7/16
Rodamiento en la Tapa						
de Bronce en la Descarga	3 - 3/8 × 1 1/4	3 - 1/2 × 1 1/2	3 - 5/8 × 1 3/4	3 - 5/8 × 1 3/4	3 – 3/4 × 2	3 - 3/4 × 2 1/4
de Bolas en la Descarga	3 - 3/8 × 1 1/4	3 - 1/2 × 1 1/2	3 - 5/8 × 1 1/2	3 - 5/8 × 13/4	3 – 3/4 × 2	3 - 3/4 × 2 1/4
de Bronce de Pared	4 - 3/8 × 1 1/4	4 - 1/2 × 1 1/2	4 - 5/8 × 1 3/4	4 - 5/8 × 13/4	4 – 3/4 × 2	4 - 3/4 × 2 1/4
de Bolas de Pared	4 - 3/8 × 1 1/4	4 - 1/2 × 1 1/2	4 - 5/8 × 1 3/4	4 - 5/8 × 13/4	4 - 3/4 × 2 1/2	4 - 3/4 × 2 3/4
de Rodillos de Pared		4 - 1/2 × 2 1/2	4 - 1/2 × 2 1/2	$4 - 5/8 \times 3$	4 – 3/4× 3	4 - 3/4 × 3 1/4
de Bronce, de piso	2-3/8 × 1 1/2	2 - 1/2 × 1 3/4	2 - 5/8 × 2	2 - 5/8 × 21/4	2 - 3/4 × 2 1/2	2 - 7/8 × 2 3/4
de Bolas, de piso	2 - 3/8 × 1 3/4	2 - 1/2 × 2 1/4	2-5/8 × 2 1/2	2 - 5/8 × 23/4	2 - 7/8 × 3 1/2	2-7/8 × 3 3/4
de Rodillos, de piso		2 - 1/2 × 2 1/4	2 - 5/8 × 2 1/2	2 - 5/8 × 23/4	2 - 3/4 × 3	2-7/8 × 3 1/2

Fuente: Elaboración propia con base en: MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadores%20helicoi dales/seccion%20h%20-%20helicoidales.pdf

3.4 SISTEMA DE CONTROL

El sistema de control es el que se encarga de controlar cada uno de los motores y bomba de la máquina, a través de un controlador lógico programable (PLC), este dispositivo estará programado para desarrollar los requerimientos deseados en el proceso y se trabaje de forma continua, aliviando las funciones del operario, también a partir de un circuito de potencia.

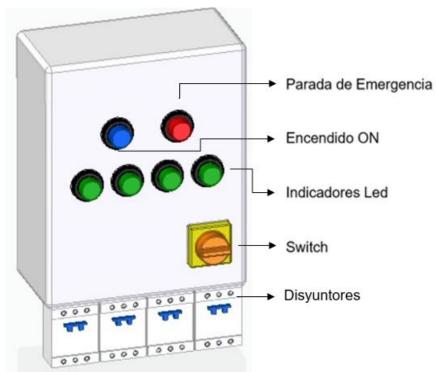


Figura 226. Panel de Control de la máquina

Fuente: Elaboración propia

En el diseño del sistema de control es necesario contar con un PLC que tenga 4 entradas y 4 salidas.

Empleando el software FluidSim 4.2 de FESTO, se identifican las entradas y las salidas necesarias para llevar a cabo el funcionamiento de la máquina deseado, obteniendo lo siguiente:

Tabla 24. Entradas y Salidas del PLC

	ENTRADA	S		SALIDA	S
Puerto	Marca	Descripción	Puerto	Marca	Descripción
I1	SW	Switch	Q1	M.B	Motor Bomba
12	INT	Interruptor de encendido	Q2	M.L	Motor Lavadora
13	P.EM	Parada de emergencia	Q3	M.R	Motor Ralladora
14	S	Sensor de nivel de agua	Q4	M.T	Motor Tamizadora

Fuente: Elaboración propia

A continuación, se muestra las conexiones de las entradas y salidas del PLC:

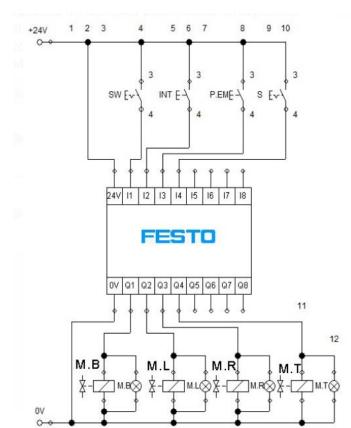


Figura 227. Conexiones del PLC

Fuente: Elaboración propia con base en: FluidSim 4.2

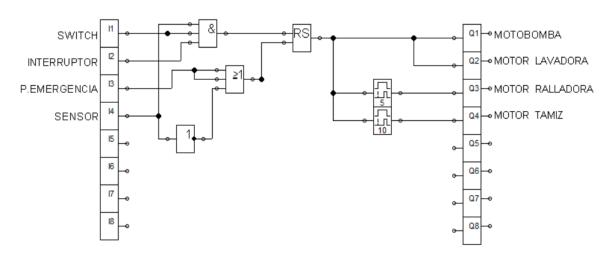
3.4.1 Elementos de entrada y salida del PLC.

ENTRADA

Swicht (I1): Se encarga de abrir y cerrar el paso de corriente en la máquina.

Interruptor (I2, I3): Se encarga de encender (ON) o apagar (OFF) la máquina.

Sensor de Nivel (I4): Se encarga de entregar una señal una vez el sensor se accione.


SALIDAS

Motor (Q1, Q2, Q3, Q4): Se encarga de convertir la energía eléctrica en mecánica y transmitirla a los sistemas de la máquina.

Indicador Led: Se encarga de la visualización del encendido o apagado de los motores.

3.4.2 Programación del PLC. Se realiza la siguiente programación, teniendo en cuenta la simbología de entradas y salidas anteriores.

Figura 228. Programación del PLC

Fuente: Elaboración propia con base en: FluidSim 4.2

3.4.2.1 Descripción de la programación del PLC. La programación del PLC se describe a continuación, se utilizó una compuerta lógica AND para verificar la posición inicial del sistema y ponerlo en marcha, luego de cumplir con la activación de las entradas indicadas, la compuerta lógica envía una señal y activa el SET de

la memoria LATCHING RELAY la cual se encarga de enviar una señal a la salida Q1, Q2 y a los temporizadores ON DELAY, los cuales esperan un tiempo determinado, para activar las salidas Q3 Y Q4, para realizar el RESET de la memoria LATCHING RELAY es necesario activar la entrada I3 o realizar la desactivación de la entrada I1, la cual es verificada por una compuerta lógica NOR.

3.4.3 Circuito de potencia Motores Trifásicos. Este circuito se realizó a través del software de dibujo CADe SIMU.

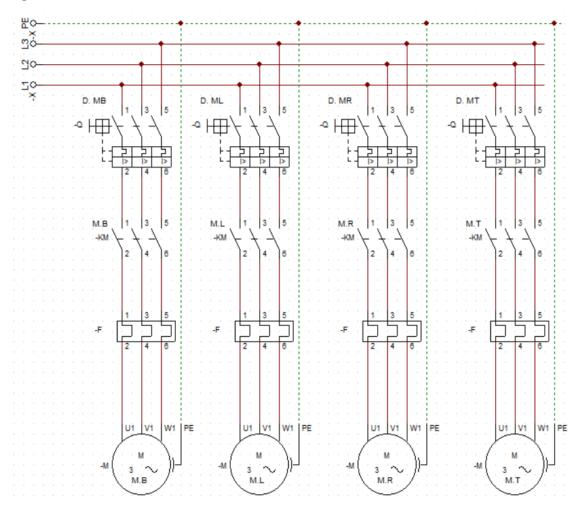
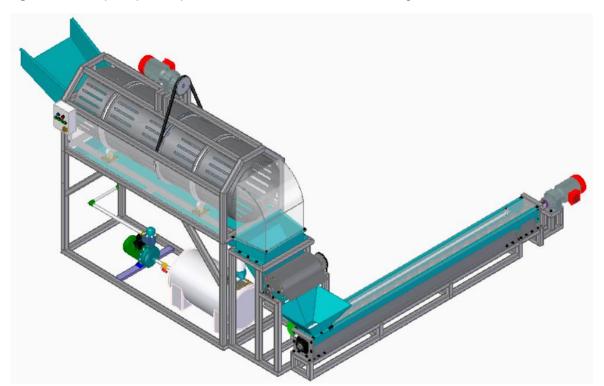


Figura 229. Circuito de Potencia

Fuente: Elaboración propia con base en: CADe SIMU

3.4.3.1 Elementos del circuito de potencia.


Disyuntor (Q): Se encarga de abrir y cerrar el paso de corriente en la máquina, manualmente.

Contactor (KM): Se encarga de abrir y cerrar el paso de corriente en la máquina, recibiendo una señal de los relés de cada motor del PLC.

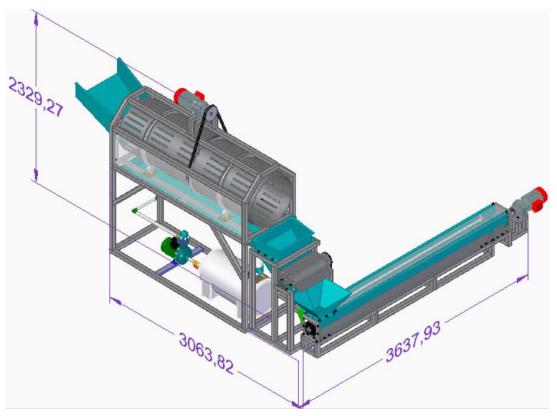
Guarda motor (F): Es el encargado de proteger a los motores ante sobre cargas.

3.5 Máquina para la producción de almidón húmedo de Sagú. La distribución detallada de la máquina y planos de sus componentes se encuentran en el Anexo A.

Figura 230. Máquina para la producción de almidón húmedo de Sagú

Fuente: Elaboración propia con base en: Solid Edge ST10

4. MANUALES DE LA MÁQUINA


4.1 MANUAL DE MONTAJE

A continuación, se mostrará al usuario de manera concisa el debido procedimiento para montar y desmontar la máquina.

Recomendaciones:

- Siga todas las indicaciones para evitar accidentes y desarrollar un correcto funcionamiento.
- Verifique que el espacio de instalación de la máquina sea adecuado en cuanto nivelación, limpieza y desarrollo del proceso.
- Contar con el espacio indicado para la ubicación de la máquina.

Figura 231. Dimensionamiento máquina para la producción de almidón húmedo de Sagú

Fuente: Elaboración propia con base en: Solid Edge ST10

Se inicia el montaje de la máquina con el sistema de lavado, luego se monta el sistema de rallado y por último el sistema de tamizado, a continuación, se explica detallamente cada paso a seguir.

4.1.1 Montaje Del Sistema De Lavado.

ENSAMBLE DE LA ESTRUCTURA

Los perfiles cuadrados 50X50X4 mm de la estructura están unidos por medio de soldadura con un electrodo AWS E7018, como se indica en la siguiente figura.

Ensamble

Paso 4

Paso 7

Paso 6

Paso 5

Paso 3

Paso 2

Figura 232. Unión de los perfiles sistema de lavado

Fuente: Elaboración propia con base en: Solid Edge ST10

Tabla 25. Perfiles del sistema de lavado

Perfil	N°	L (mm)
50x50x4 mm	1	2150.3
50x50x4 mm	2	2150.3
50x50x4 mm	3	807.5
50x50x4 mm	4	807.5
50x50x4 mm	5	1733.8
50x50x4 mm	6	1733.8
50x50x4 mm	7	1733.8
50x50x4 mm	8	1733.8
50x50x4 mm	9	2050
50x50x4 mm	10	2050
50x50x4 mm	11	707.5
50x50x4 mm	12	707.5
50x50x4 mm	13	2050
50x50x4 mm	14	2050
50x50x4 mm	15	2050
50x50x4 mm	16	2050
50x50x4 mm	17	707.5
50x50x4 mm	18	359.2
50x50x4 mm	19	299.5
50x50x4 mm	20	359.2
50x50x4 mm	21	359.2
50x50x4 mm	22	299.5
50x50x4 mm	23	359.2
50x50x4 mm	24	2050
50x50x4 mm	25	2050
50x50x4 mm	26	208.5
50x50x4 mm	27	328.7
50x50x4 mm	28	208.5
50x50x4 mm	29	208.5
50x50x4 mm	30	328.7
50x50x4 mm	31	208.5
50x50x4 mm	32	95
50x50x4 mm	33	95
50x50x4 mm	34	721.8
50x50x4 mm	35	721.8
50x50x4 mm	36	721.8
50x50x4 mm	37	721.8

Figura 233. Paso a paso del ensamble de la estructura del sistema de lavado

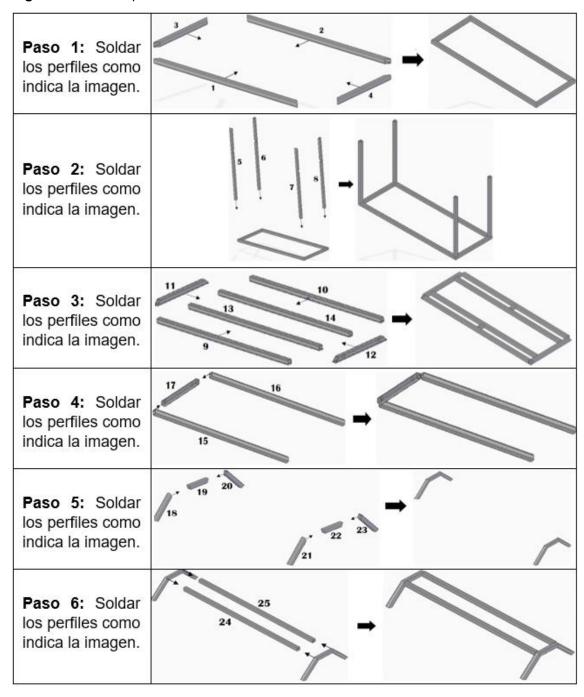


Figura 233. (Continuación)

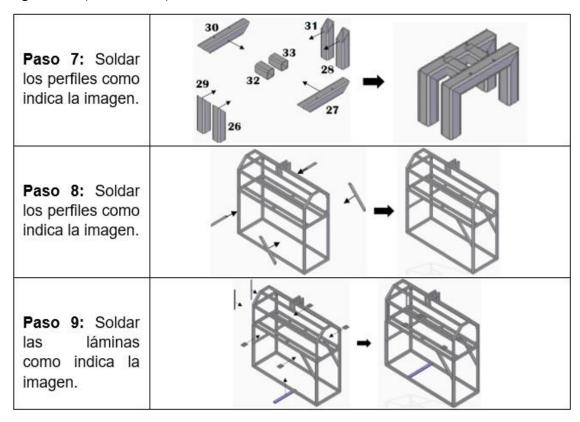
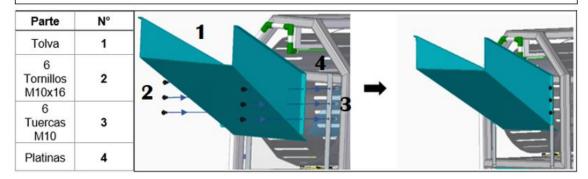



Figura 234. Ensamble de la tolva sistema de lavado

Ensamble de la Tolva de alimentación lavadora rotativa: La tolva se ensambla a dos platinas soporte por medio de 6 tornillos M10 x 16 mm y 6 tuercas Hexagonales M10, como se indica en la siguiente imagen, se recomienda un ajuste adecuado.

Fuente: Elaboración propia

Figura 235. Ensamble de las ruedas de soporte

Ensamble de las Ruedas de soporte: Las cuatro ruedas de soporte se ensamblan sobre las platinas que se encuentran soldadas a la estructura, por medio de 16 tornillos M10 x 25 mm y 16 tuercas Hexagonales M10, como se indica en la siguiente imagen, se recomienda un ajuste adecuado.

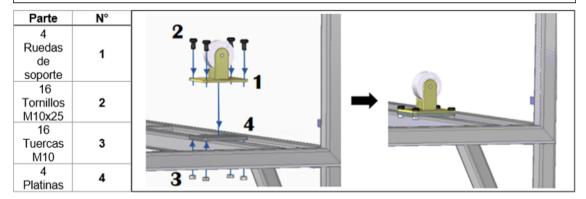
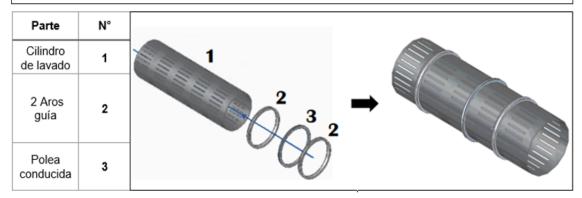



Figura 236. Ensamble de elementos en el cilindro de lavado

Ensamble de los Aros guía y la Polea conducida: Los dos aros guía y la polea conducida, son ensamblados en el cilindro de lavado, por medio de soldadura con un electrodo AWS E7018, sus ubicaciones sobre este se encuentran en el Anexo A, Plano 5.

Fuente: Elaboración propia

Figura 237. Ensamble del cilindro de lavado

Ensamble del Cilindro de lavado: El cilindro de lavado se ensambla dentro de la estructura y se ubica sobre las cuatro ruedas de soporte, las cuales se ajustan a los aros guía, como se indica en la siguiente imagen.

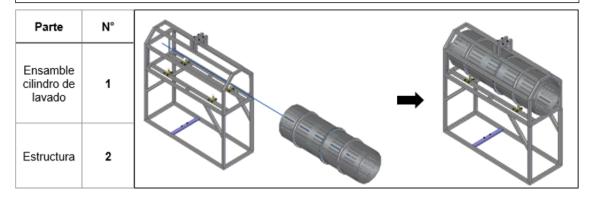
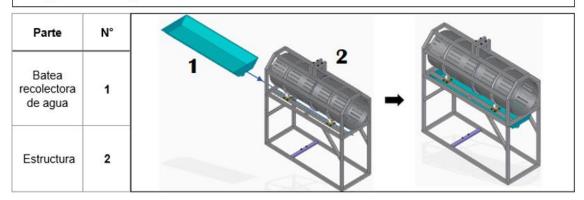



Figura 238. Ensamble de la Batea recolectora de agua

Ensamble de la Batea recolectora de agua: La batea recolectora de agua se ensambla a la estructura, por medio de sus pestañas de deslizamiento, sobre las platinas de soporte, las cuales están soldadas a la estructura, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 239. Ensamble de la Bomba

Ensamble de la Bomba: La bomba se ensambla por medio de 4 tornillos M12 x 55 mm y 4 tuercas Hexagonales M12, a la platina soporte que esta soldada en la parte inferior de la estructura, como se indica en la siguiente imagen.

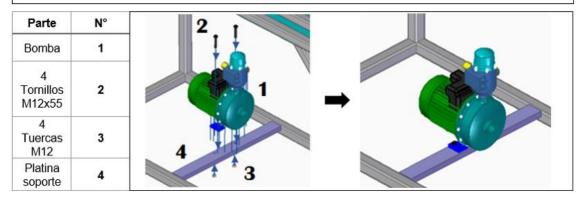
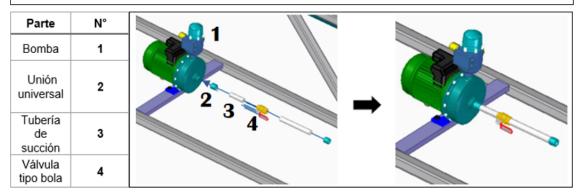



Figura 240. Ensamble de la tubería de succión

Ensamble de la Tubería de succión: La tubería de succión se ensambla en la bomba por medio de una unión universal, esta tubería está compuesta por una válvula tipo bola y tubo PVC de ½ pulgada, su esquema se encuentra en la Figura 84 del documento.

Fuente: Elaboración propia

Figura 241. Ensamble del tanque de suministro de agua

Ensamble del Tanque de suministro de agua: El tanque de suministro de agua se ensambla a la tubería de succión por medio de un acople de ½ pulgada, posteriormente se ubica la rejilla en la parte superior del tanque como se indica en la siguiente imagen.

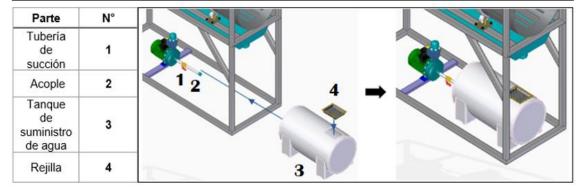
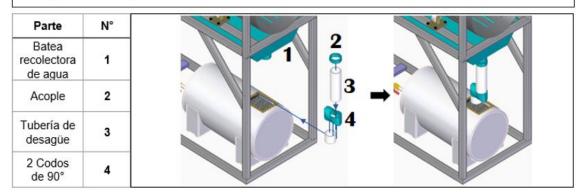



Figura 242. Ensamble de la tubería de desagüe

Ensamble de la Tubería de desagüe: La tubería de desagüe se ensambla a la batea recolectora de agua, por medio de un acople de 3 pulgadas, está compuesta por dos codos de 90° y tubo PVC de 3 pulgadas, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 243. Ensamble de la tubería de descarga

Ensamble de la Tubería de descarga: La tubería de descarga se ensambla en la bomba por medio de una unión universal, esta tubería está compuesta por 2 codos de 45°, 4 codos de 90° y tubo PVC de ½ pulgada, como se indica en la siguiente imagen, su esquema se encuentra en la Figura 84 del documento.

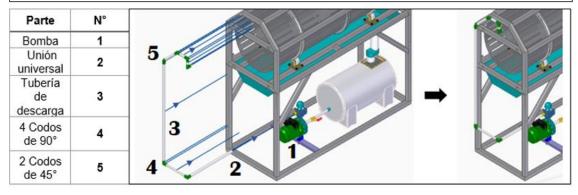
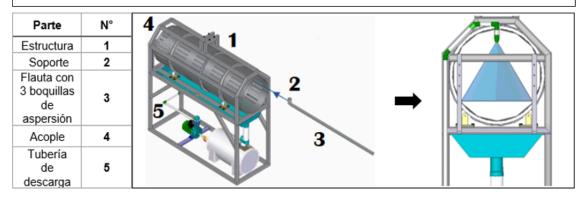
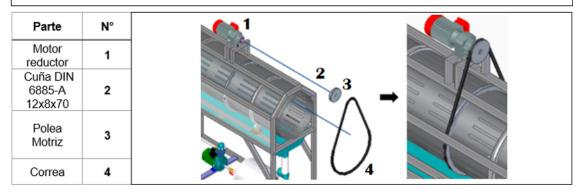



Figura 244. Ensamble del sistema de aspersión

Ensamble del Sistema de aspersión: La base del sistema de aspersión se ensambla a la estructura por medio de soldadura con un electrodo AWS E7018, posteriormente la flauta de aspersión con las tres boquillas incluidas, se ensamblan a la tuberia de descarga por medio de un acople de ½ pulgada, como se indica en la siguiente imagen.

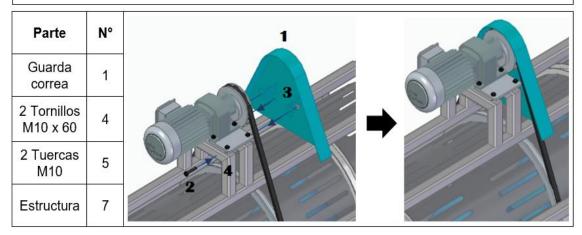
Fuente: Elaboración propia


Figura 245. Ensamble de la placa tensora y el motor reductor

Ensamble de la placa tensora y el motor reductor: La placa tensora se ensambla en la parte superior de la estructura (Número de perfil 27 y 30), por medio de 4 Pernos M10 x 80 mm y 8 tuercas hexagonales M10, posteriormente se ensambla sobre esta, el motor reductor por medio de 4 tornillos M12 x 35 mm y 4 tuercas hexagonales M12, como se indica en la siguiente imagen.

Parte	N°
Placa tensora	1
Motor reductor	2
4 Pernos M10 x 80	3
4 Tornillos M12 x 35	4
8 Tuercas M10	5
4 Tuercas M12	6
Estructura	7

Figura 246. Ensamble del sistema de transmisión de potencia


Ensamble del Sistema de transmisión de potencia: El sistema de transmisión de potencia está compuesto por un motor reductor, dos poleas, motriz y conducida y una correa, donde la polea conducida se ensamblo anteriormente en el cilindro de lavado, por tal motivo la polea motriz se ensambla directamente al motor, por medio de una cuña DIN 6885-A 12x8x70 y la correa conectando las dos poleas, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 247. Ensamble del guarda correa

Ensamble del guarda correa: El guarda correa se ensamblan a la estructura, por medio de 2 Tornillos M10 x 60 mm y 2 tuercas hexagonales M10, como se indica en la siguiente imagen

4.1.2 Montaje del Sistema De Rallado.

ENSAMBLE DE LA ESTRUCTURA Los perfiles cuadrados 50X50X4 mm de la estructura están unidos por medio de soldadura con un electrodo AWS E7018, como se indica en la siguiente imagen.

Ensamble

Paso 3

Paso 4

Paso 5

Paso 6

Figura 248. Soldadura perfiles sistema de rallado

Tabla 26. Perfiles del sistema de rallado

Perfil	N°	L (mm)
50x50x4 mm	1	656.6
50x50x4 mm	2	656.6
50x50x4 mm	3	674.5
50x50x4 mm	4	674.5
50x50x4 mm	5	574.5
50x50x4 mm	6	1022.33
50x50x4 mm	7	1022.33
50x50x4 mm	8	1022.33
50x50x4 mm	9	1022.33
50x50x4 mm	10	455.3
50x50x4 mm	11	455.3
50x50x4 mm	12	674.5
50x50x4 mm	13	674.5
50x50x4 mm	14	787.1
50x50x4 mm	15	787.1
50x50x4 mm	16	251.3
50x50x4 mm	17	251.3
50x50x4 mm	18	138.7
50x50x4 mm	19	138.7
50x50x4 mm	20	301.3
50x50x4 mm	21	158
50x50x4 mm	22	158
50x50x4 mm	23	201.32
50x50x4 mm	24	574.5
50x50x4 mm	25	201.32

Figura 249. Paso a paso del ensamble de la estructura del sistema de rallado

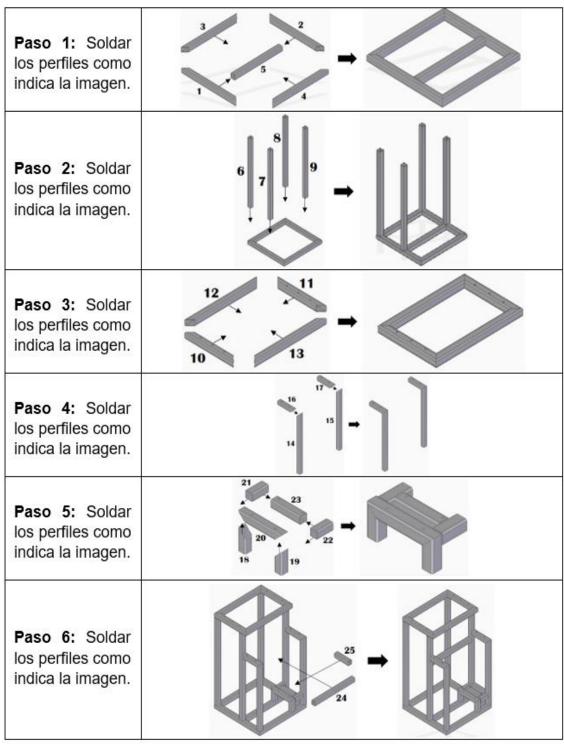



Figura 250. Ensamble de la tolva del sistema de rallado

Ensamble de la Tolva de alimentación ralladora: La tolva, se ensambla a la estructura (Número de perfil 10 y 11), por medio de 6 tornillos M10 x 60 mm y 6 tuercas Hexagonales M10, como se indica en la siguiente imagen, se recomienda un ajuste adecuado.

Fuente: Elaboración propia

Figura 251. Ensamble de elementos en el eje

Ensamble de elementos en el eje: Los elementos que se ensamblan sobre el eje de transmisión de potencia son, el cilindro de rallado el cual se ensambla por medio de dos cuñas cuadradas $\frac{1}{2}$ x $\frac{1}{2}$ in, los rodamientos los cuales se ubican sobre él y la polea conducida se ensambla por medio de una cuña cuadrada de $\frac{5}{16}$ x $\frac{5}{16}$ in, como se indica en la siguiente imagen.

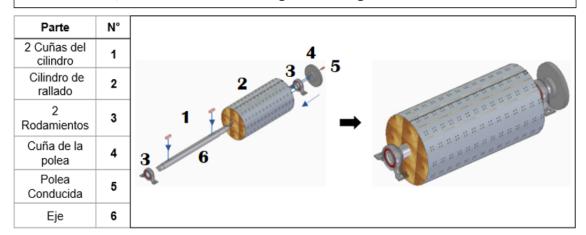
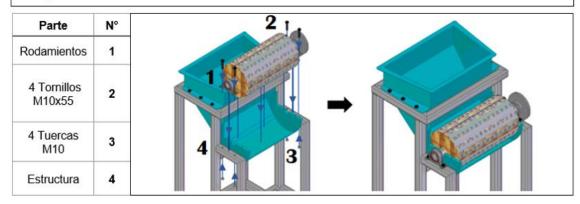



Figura 252. Ensamble de los rodamientos

Ensamble de los Rodamientos: los rodamientos una vez ubicados sobre el eje, se ensamblan por medio de 4 tornillos M10 x 55 mm y 4 tuercas Hexagonales M10 a la estructura (Número de perfil 16 y 17), como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 253. Ensamble de la tapa para tolva

Ensamble de la Tapa para tolva: La tapa que cubre al cilindro de rallado, se ensambla por medio de 4 tornillos M10 x 16 mm y 4 tuercas Hexagonales M10, a la tolva de alimentación, como se indica en la siguiente imagen.

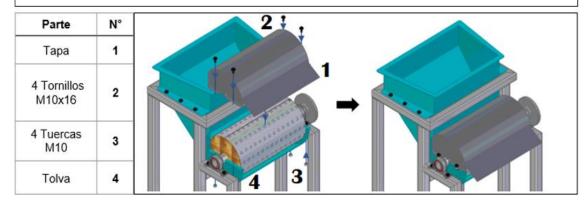
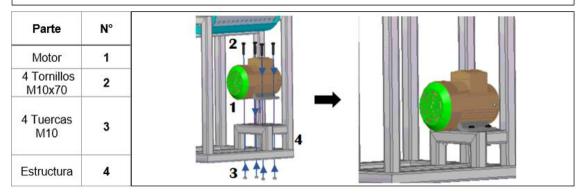



Figura 254. Ensamble de Motor

Ensamble del Motor: El motor se ensambla en la parte inferior de la estructura (Número de perfil 20 y 23) por medio de 4 tornillos M10 x 70 mm y 4 tuercas Hexagonales M10, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 255. Ensamble del sistema de transmisión de potencia

Ensamble del Sistema de transmisión de potencia: El sistema de transmisión de potencia está compuesto por un motor, dos poleas, motriz y conducida y una correa, donde la polea conducida se ensamblo anteriormente al eje de transmisión, por tal motivo la polea motriz se ensambla directamente al motor por medio de una cuña DIN 6885-A 8x7x90 y la correa conectando las dos poleas, como indica en la siguiente imagen.

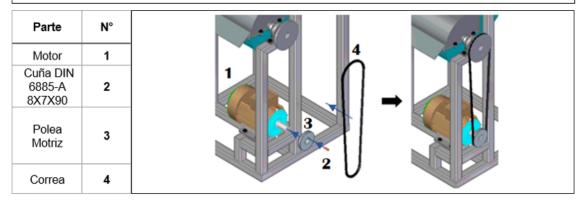
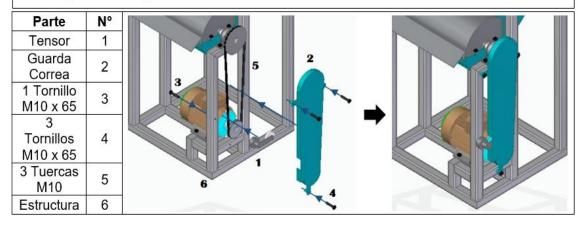



Figura 256. Ensamble del tensor y el guarda correa

Ensamble del tensor y el guarda correa: El tensor y el guarda correa se ensamblan a la estructura, por medio de 1 Tornillo M10 x 65 mm y 3 Tornillos M10 x 60 mm respectivamente, y se ajustan por medio de tuercas hexagonales M10, como se indica en la siguiente imagen.

4.1.3 Montaje del Sistema De Tamizado.

ENSAMBLE DE LA ESTRUCTURA

Los perfiles cuadrados 50X50X4 mm de la estructura están unidos por medio de soldadura con un electrodo AWS E7018, como se indica en la siguiente imagen.

Ensamble

Paso 1

Paso 5

Paso 5

Figura 257. Soldadura perfiles sistema de tamizado

Tabla 27. Perfiles del sistema de tamizado

Perfil	N°	L (mm)
50x50x4 mm	1	257.2
50x50x4 mm	2	257.2
50x50x4 mm	3	200
50x50x4 mm	4	200
50x50x4 mm	5	257.2
50x50x4 mm	6	150
50x50x4 mm	7	150
50x50x4 mm	8	257.2
50x50x4 mm	9	257.2
50x50x4 mm	10	200
50x50x4 mm	11	200
50x50x4 mm	12	2718
50x50x4 mm	13	2718
50x50x4 mm	14	157.2
50x50x4 mm	15	157.2
50x50x4 mm	16	2991
50x50x4 mm	17	2991
50x50x4 mm	18	157.2
50x50x4 mm	19	157.2
50x50x4 mm	20	100
50x50x4 mm	21	100
50x50x4 mm	22	100
50x50x4 mm	23	100
50x50x4 mm	24	367
50x50x4 mm	25	367
50x50x4 mm	26	185
50x50x4 mm	27	195
50x50x4 mm	28	195
50x50x4 mm	29	185
50x50x4 mm	30	185
50x50x4 mm	31	139
50x50x4 mm	32	139
50x50x4 mm	33	139
50x50x4 mm	34	139

Figura 258. Paso a paso del ensamble de la estructura del sistema de tamizado

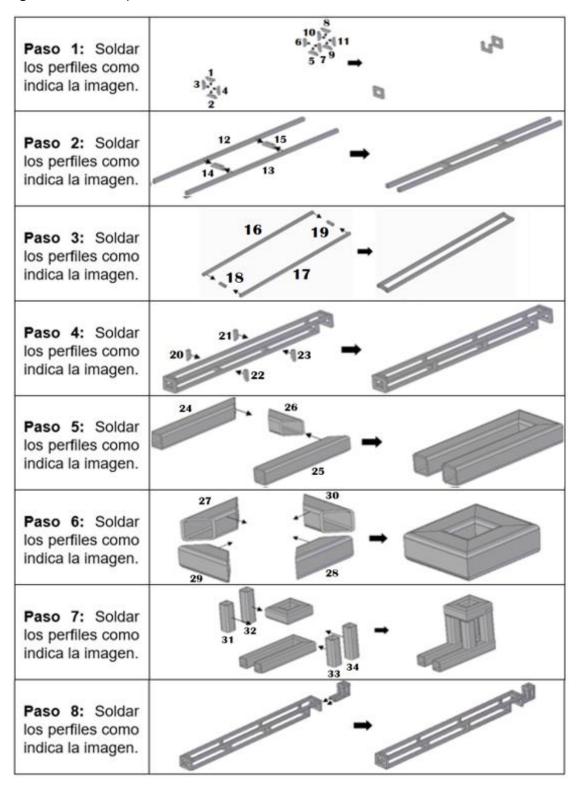
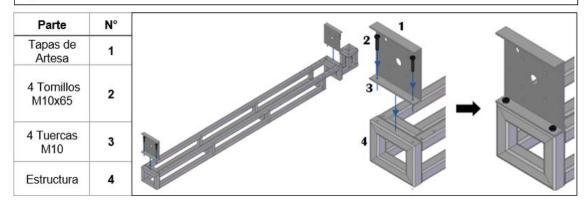



Figura 259. Ensamble de las tapas de artesa

Ensamble de las Tapas de Artesa: Las dos tapas se ensamblan a la estructura (Número de perfil 1 y 8), por medio de tornillos M10 x 65 mm y tuercas Hexagonales M10, como se indica en la siguiente imagen, se recomienda un ajuste adecuado.

Fuente: Elaboración propia

Figura 260. Ensamble del recolector de almidón húmedo de Sagú

Ensamble del Recolector de almidón húmedo de Sagú: El recolector de almidón, se ensambla a la estructura (Número de perfil 16 y 17), por medio de 12 tornillos M10 x 60 mm y 12 tuercas Hexagonales M10, como se indica en la siguiente imagen.

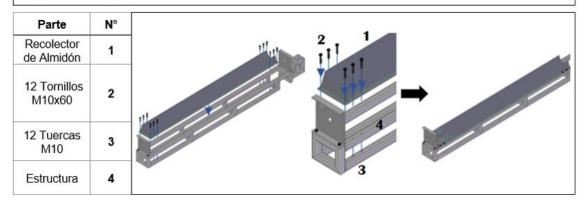


Figura 261. Ensamble de la descarga

Ensamble de la Descarga: La descarga es por donde sale el afrecho, se ensambla a la estructura (Número de perfil 16 y 17), por medio de 8 tornillos M10 x 60 mm y 8 tuercas Hexagonales M10, como se indica en la siguiente imagen.

Parte	N°	11.2	
Descarga	1	ŢŢŧ	
8 Tornillos M10x60	2		→
8 Tuercas M10	3	3.5	
Estructura	4	3	

Fuente: Elaboración propia

Figura 262. Ensamble de la artesa del tamiz

Ensamble de la Artesa Tamiz: La artesa, se ensambla a las tapas, por medio de 12 tornillos M10 x 16 mm y 12 tuercas Hexagonales M10, y se ubica sobre el recolector de almidón húmedo de Sagú y la descarga, como se indica en la siguiente imagen.

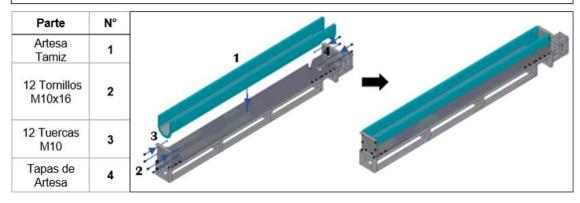
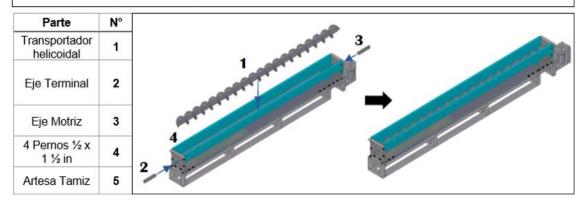



Figura 263. Ensamble del transportador helicoidal

Ensamble del Transportador helicoidal: El transportador helicoidal, se ensambla a las tapas de artesa, con dos ejes, motriz y terminal, estos a su vez por medio de 4 Pernos ½ x 1 ½ in, y se ubica en el interior de la artesa, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 264. Ensamble de los rodamientos de pared

Ensamble de los Rodamientos: Los dos rodamientos, se ensamblan a sus respectivos soportes de pared y posteriormente a las tapas de artesa, por medio de 8 tornillos Hexagonales de $\frac{1}{2}$ x $\frac{1}{2}$ pulgada y 8 tuercas Hexagonales de $\frac{1}{2}$ pulgada, como se indica en la siguiente imagen.

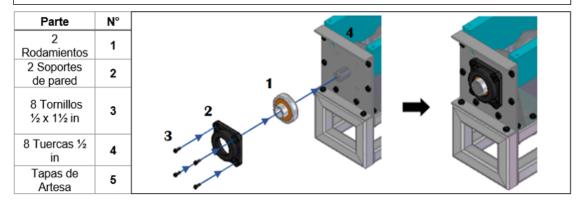
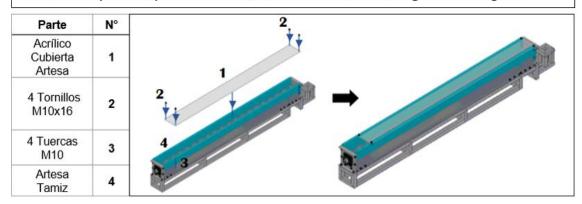
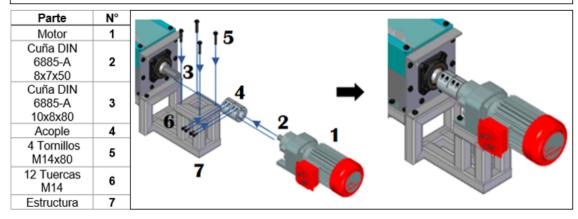



Figura 265. Ensamble del acrílico cubre artesa

Ensamble del Acrílico cubierta artesa: El acrílico cubierta, se ensambla a la artesa, por medio de 4 tornillos M10 x 16 mm y 4 tuercas Hexagonales M10, y se ubica en la parte superior de esta, como se indica en la siguiente imagen.

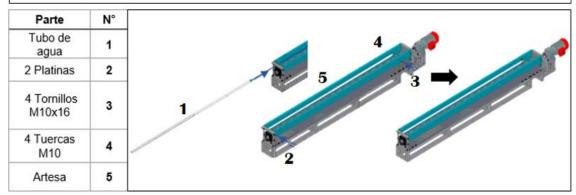
Fuente: Elaboración propia


Figura 266. Ensamble de la tolva de alimentación sistema de tamizado

Ensamble de la Tolva de alimentación tamiz: La tolva se ensambla a la artesa, por medio de 6 tornillos M10 x 16 mm y 6 tuercas Hexagonales M10, como se indica en la siguiente imagen, se recomienda un ajuste adecuado.

Parte	N°	2.1.
Tolva	1	1
6 Tornillos M10x16	3	→
6 Tuercas M10	4	4 3
Artesa Tamiz	5	

Figura 267. Ensamble del Motor reductor


Ensamble del Motor reductor: El motor reductor se ensambla por medio dos cuñas, las cuales se ubican en el eje motriz del transportador helicoidal y en el eje del motor respectivamente, unidos por un acople, posteriormente se ensambla en la parte final de la estructura sobre un soporte acondicionado (Número de perfil 29 y 30), por medio de 4 tornillos M14 x 80 mm y 4 tuercas Hexagonales M14, como se indica en la siguiente imagen.

Fuente: Elaboración propia

Figura 268. Ensamble del tubo dispensador de agua

Ensamble del Tubo dispensador de agua: El tubo dispensador de agua, se ensambla a la artesa tamiz, por medio de dos platinas las cuales se fijan a esta con 4 tornillos M10 x 16 mm y 4 tuercas Hexagonales M10, como se indica en la siguiente imagen.

4.2 MANUAL DE OPERACIÓN

A continuación, se dan a conocer las actividades necesarias para realizar las correspondientes secuencias de operación de la máquina.

Se sugiere al personal encargado de la operación de la máquina, seguir las instrucciones para poner en marcha y obtener un correcto funcionamiento de la máquina.

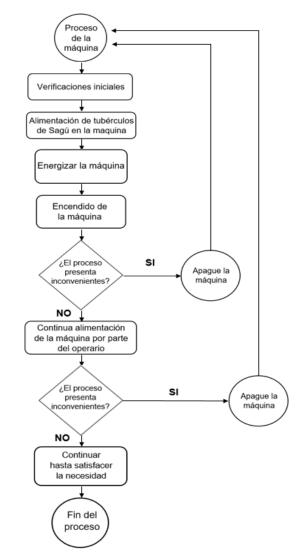


Figura 269. Proceso de operación de la máquina

- **4.2.1 Pre operación de la máquina.** Antes de iniciar el proceso de operación de la máquina, se debe hacer el respectivo llenado de la capacidad de tubérculos de Sagú establecidos en la tolva de alimentación de la primera etapa de lavado 60 Kg, este proceso se lleva a cabo por un operario a cargo, se recomienda realizar las siguientes inspecciones para llevar un correcto funcionamiento:
- Tenga a la mano la carga con la capacidad estipulada para evitar pérdidas de tiempo.
- Verificar que no se encuentren objetos obstructores en la máquina.
- Verificar que el tanque de suministro de agua del sistema de lavado este en el nivel adecuado de operación 33 L, como se indica en la sección 3.1.7.

Nota: Si el nivel del agua en el tanque de suministro, no se encuentra en el nivel de trabajo estipulado para la máquina, esta no iniciara su proceso de operación.

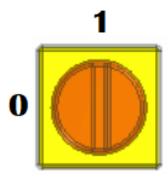

- Verificar que la conexión de la máquina sea correcta.
- Verificar que los motores estén des energizados, los indicadores Led del panel de control, deberán estar apagados.

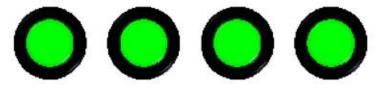
Figura 270. Indicadores Led del Panel de Control apagados

- **4.2.2 Operación de la máquina.** Luego de realizar las inspecciones anteriores, el operario deberá poner en marcha la máquina, para esto debe proceder a realizar las siguientes instrucciones:
- Introducir los tubérculos de Sagú a la tolva de alimentación del sistema de lavado.
- Energizar el sistema con el Switch en la posición 1.

Figura 271. Switch energizado en la posición 1

Fuente: Elaboración propia con base en: Solid Edge

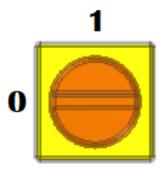
• Encender la máquina con el botón de encendido del panel de control.


Figura 272. Botón de encendido del Panel de Control

Fuente: Elaboración propia con base en: Solid Edge

Verificar que los indicadores Led del panel de control se encuentren encendidos.

Figura 273. Indicadores Led del Panel de Control encendidos



• Si el proceso no presenta algún funcionamiento inadecuado, alimente constantemente la máquina, hasta satisfacer la necesidad estipulada.

Nota: El operario deberá estar a disposición y observar que el proceso se ejecute correctamente, también realizar la limpieza de la rejilla del tanque de suministro de agua del sistema de lavado, cada vez que visualmente se observe llena.

- **4.2.3 Detención de la máquina.** El operario será el encargado de apagar la máquina cuanto termine el proceso, y a su vez si observa alguna falla o un inadecuado funcionamiento de la misma.
- Una vez se satisfaga la necesidad estipulada, des energice la maquina con el Switch del panel de control en la posición 0.

Figura 274. Switch energizado en la posición 0

Fuente: Elaboración propia con base en: Solid Edge

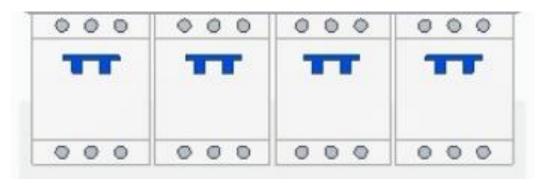

 Si se presenta algún funcionamiento inadecuado durante el proceso o fallas, realice una parada de emergencia con el Botón rojo del panel de control.

Figura 275. Indicadores Led del Panel de Control encendidos

 Si se presenta algún mal funcionamiento o falla, en solo una de las etapas de la máquina, utilice los disyuntores para apagar el motor que está presentando el inconveniente.

Figura 276. Disyuntores del panel de control

4.3 MANUAL DE SEGURIDAD

A continuación, se identificarán los factores de riesgo que pueden afectar la salud del usuario y se implementaran medidas para minimizar los accidentes en el manejo de la máquina.

Se sugiere al personal encargado de la máquina, seguir las instrucciones para asegurar su integridad física, el operario debe portar los implementos de seguridad para ejecutar la operación de la máquina.

Cuadro 19. Implementos de seguridad en el manejo de maquinaria

Protección auditiva	
Casco	
Protección visual	
Guantes	Edin
Calzado de seguridad	

Fuente: Elaboración propia con base en: AAE PROVEEDORES INDUSTRIALES. Seguridad industrial. [Sitio web]. [Consultado 25, abril 2020]. Disponible en: https://www.aeeproveedores.com/reglas-de-seguridad-para-empresa/ DISTRIBUCIONES Y DOTACIONES R.A.C. Botas de seguridad. [Sitio web]. [Consultado 25, abril 2020]. Disponible en: https://dotacionesrac.com/producto/botas-de-seguridad-industrial-ref-olimpo/ SECOES. Normativa equipos de protección ocular. [Sitio web]. [Consultado 25, 2020]. Disponible abril https://www.equipodeproteccionindividual.com/normativa-equipos-proteccionocular-gafas-pantallas-y-filtros-proteccion/

4.3.1 Factores de riesgo y medidas de mitigación. Es necesario evidenciar que factores de la máquina pueden causar daños a los operarios o a las personas que estén a su alrededor y establecer distintas medidas de mitigación para evitarlos, se debe contemplar la posibilidad de riesgos como:

Cuadro 20. Clasificación de riesgos según su factor

FACTOR	RIESGO
Ruidos o vibraciones	Físico
Ergonómico	Físico
Enganchamientos	Mecánico
Atrapamientos	Mecánico
Aplastamientos	Mecánico
Cortes	Mecánico
Fricción	Mecánico
Contacto eléctrico	Eléctricos

Fuente: Elaboración propia con base en: Prevención de accidentes con máquinas. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://tusaludnoestaennomina.com/wp-content/uploads/2016/02/prevencion-accidentes-con-maquinas-PARA-PYMES.pdf

Ruidos o vibraciones: Este factor de riesgo puede causar daño en la salud auditiva del operario, tanto como en otros aspectos de la salud, puede provocar, estrés, cansancio o sueño excesivo, efectos sobre el rendimiento en la cotidianidad⁸⁴,entre otras, las vibraciones excesivas son causantes de dolores musculares, por lo tanto es indispensable establecer las siguientes medidas de mitigación:

- Seguir con los protocolos establecidos.
- Utilización de los implementos de seguridad.
- Realizar un adecuado mantenimiento a los elementos causantes de este factor.

Ergonómico: Este factor de riesgo es causado debido a las malas posturas que generan los espacios de trabajo inadecuados, esfuerzos físicos⁸⁵ que el operario realiza en el levantamiento de objetos pesados, por lo tanto es indispensable establecer las siguientes medidas de mitigación:

⁸⁴ Efectos fisiológicos del ruido. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://www.ehu.eus/acustica/espanol/ruido/efectos%20y%20normativa/efectos%20y%20normativa.

⁸⁵ Prevención de accidentes con máquinas. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://tusaludnoestaennomina.com/wp-content/uploads/2016/02/prevencion-accidentes-con-maquinas-PARA-PYMES.pdf

- Utilización de implementos de seguridad
- Capacitación de personal
- Contar con espacios de trabajo acorde a las necesidades del operario.

Enganchamientos: Este factor de riesgo se puede causar debido a componentes giratorios de la máquina que produzcan el enganchamiento de algún elemento o parte del cuerpo del operario, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Seguir instrucciones de manual de operación de la máguina.
- Manejar una distancia adecuada con estos elementos
- Asegurarse que para entrar en contacto con ellos la máquina debe estar completamente apagada.
- Verificar si los elementos que causen este factor están en su posición adecuada, para efectuar un correcto funcionamiento.

Atrapamientos: Este factor de riesgo se puede causar debido a elementos de la máquina girando a distintos sentidos, poleas, correas, engranajes, entre otras, puede generar la pérdida o daño de alguna parte física del operario, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Seguir instrucciones de manual de operación de la máquina.
- Realizar operaciones netamente de estos elementos con la máquina inhabilitada.
- Verificar si hay algún elemento de obstrucción estando en funcionamiento, si se encuentra objetos ajenos a este, parar inmediatamente el proceso.
- Verificar si los elementos que causen este factor están en su posición adecuada, para efectuar un correcto funcionamiento.

Aplastamientos: Este factor de riesgo se puede causar por elementos pesados, generados más probablemente en el montaje de la máquina, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Contar con personal capacitado
- Seguir todas instrucciones de operación y montaje de la máquina.
- Uso de elementos de protección.

Cortes: Este factor de riesgo se puede causar por contacto con elementos móviles o cortantes, puede generar heridas tanto leves como graves en los operarios, incluyendo la perdida de alguna parte física del mismo, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Interactuar con la máquina cuando este fuera de funcionamiento
- Cuando se encuentre en operación, establecer distancias críticas con estos componentes
- Utilizar los respectivos elementos de protección.

Fricción por las velocidades: Este factor de riesgo se puede causar por elementos abrasivos o giratorios de la máquina, puede generar heridas graves o leves, perdida de miembros físicos del operario, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Seguir las instrucciones de operación de la maquina
- No cometer actos irresponsables frente a la operación de la maquina
- Uso de elementos de protección
- Intervenir en elementos de la máquina, únicamente estando sin funcionamiento.

Contacto eléctrico: Este factor de riesgo se puede causar por el contacto entre el operario y zonas que requieren o almacenan energía eléctrica, por lo tanto, es indispensable establecer las siguientes medidas de mitigación:

- Uso de elementos de protección
- "El operario no debe entrar en contacto con fuentes de energía eléctrica" 86 mientras la máquina esté en funcionamiento.
- El operario debe mantener una distancia critica entre los elementos eléctricos.
- Contar con personal capacitado

4.4 MANUAL DE MANTENIMIENTO

A través del siguiente manual de mantenimiento se identificarán los elementos de la máquina, sus posibles fallas e inspecciones y sus actividades correspondientes para efectuar un adecuado tratamiento a las fallas que se pueden presentar.

Es necesario implementar un mantenimiento, ya que de eso depende la vida útil y el adecuado funcionamiento de la máquina diseñada.

⁸⁶ Prevención de accidentes con máquinas. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://tusaludnoestaennomina.com/wp-content/uploads/2016/02/prevencion-accidentes-con-maquinas-PARA-PYMES.pdf

Cuadro 21. Inspecciones a los elementos de la máquina.

Sistema	Elemento	Inspección	Falla	Frecuencia
Alimentación	Tolva	Revisar ruidos y ajuste	Vibraciones	12 Meses
	D. L. L.		Desgaste	24 Meses
Lavado	Ruedas de soporte	Verificar ajuste del eje	Desbalanceo	12 Meses
	Aros guía	Revisar el desgaste	Desgaste	12 Meses
Aspersión Boquillas de aspers		Revisar que su aspersión	Taponamiento en la boquilla	Mensual
		sea la adecuada Comparar el área de aspersión con las otras boquillas	Desgaste en la boquilla	3 Meses
	Boquillas de aspersores		Inestabilidad en la presión	Mensual
			Desgaste en la boquilla	3 Meses
		Revisar que tenga la	Inestabilidad en la presión	Mensual
		presión adecuada	Desgaste en la boquilla	3 Meses

Cuadro 21. (Continuación)

Sistema	Elemento	Inspección	Falla	Frecuencia
			Sistema eléctrico	
		Verificar presión	Sistema mecánico	
	Bomba		Suministro del agua	6 Meses
		Revisar empaques de la bomba	Fugas	
			Porosidades	
	Tuberías	Revisar línea de tubería	Ajuste de	8 Meses
	raborias	rtovicar inica do tabolia	conexiones	
			Fugas	
Rallado	Cilindro de rallado	Revisar estado del cilindro	Desgaste	18 Meses
		Revisar el estado del helicoidal	Desgaste	12 Meses
	Transportador helicoidal		Fractura del eje	12 Meses
		Revisar alineamiento	Desgaste	
Tamizado			Des alineamiento	
	Artesa	Revisar de tornillos de unión	Vibraciones	6 Meses
	Ailead		Desgaste del helicoidal	12 Meses
Estructural	Vigas, columnas, laminas	Verificar cargas	Deformaciones	3 Meses

Cuadro 21. (Continuación)

Sistema	Elemento	Inspección	Falla	Frecuencia
		Verificación de humedad y corrosión	Corrosión y oxidación	4 Meses
	Uniones	Verificar el ajuste de los tornillos	Vibraciones	12 Meses
	Officiles	Revisar el estado de la soldadura	Fisuras y grietas	18 Meses
		Revisión de grietas en canales	Grietas	12 Meses
	Poleas	Revisión de desgaste	Desgaste	12 Meses
		Revisión de alineamiento	Des alineamiento	12 Meses
	Correas	Revisión de alineamiento	Des alineamiento	12 Meses
		Revisión de tensión	Vibraciones	8 Meses
Transmisión de potencia		Revisión de desgaste	Desgaste	12 Meses
potentia		Revisión de alineamiento	Pérdidas de energía	
			Vibraciones	12 Meses
	Eje		Des alineamiento	
		Devisión de corre-	Fracturas	6 Meses
		Revisión de cargas	Deformaciones	

Cuadro 21. (Continuación)

Sistema	Elemento	Inspección	Falla	Frecuencia
	Daviaiá	Revisión de balanceo	Desgaste	0.14
		Revision de balanceo	Vibraciones	8 Meses
		Revisión de alineación	Sobrecalentamiento	6 Meses
			Fatiga	
	Dadamiantas	Verificar cargas	Desgaste	8 Meses
	Rodamientos		Sobrecalentamiento	
		Verificar lubricación	Desgaste	12 Meses
		verifical lubrication	Sobrecalentamiento	12 Meses
		Revisión de sobrecargas	Sobre carga en el eje	
		gue	Perdida de energía	
	Motor	Revisión de ruidos	Rodamientos	12 Meses
		Verificar la alimentación	Baja tensión	
		adecuada	Carga excesiva	
		Verificar fusibles, contactos y conexiones	Motor sin funcionamiento	12 Meses

Cada elemento presenta una posible falla, se presenta a continuación las siguientes actividades para dar solución a cada una de estas.

Cuadro 22. Fallas en los elementos de la maquina

Elemento	Falla	Actividad
Tolva	Vibraciones	Ajustar los tornillos de unión como indica el manual de montaje de la maquina
Aros guía	Desgaste	Cambiar los aros guía
Ruedas de soporte	Desgaste	Cambiar ruedas Lubricar adecuadamente los rodamientos de las ruedas
	Desbalanceo	Ajustar el eje de la rueda de soporte según el montaje de la maquina
Tuberías	Fugas	Ajuste el caudal de la tubería Emplee herramientas para encontrar la fuga y cambie la sección dañada de tubería
Boquillas de aspersión	Taponamiento	Limpie las boquillas con elementos adecuados
	Desgaste	Cambie la boquilla
	Sistema eléctrico	Revisar las conexiones y repararlas Cambiar contactos
Bomba	Sistema mecánico	Lubricar sus componentes Cambiar componentes dañados
	Fugas	Cambiar sellos
Cilindro de rallado	Desgaste	Cambiar la lámina que cubre el cilindro de rallado

Cuadro 22. (Continuación)

Elemento	Falla	Actividad
Transportador helicoidal	Des alineamiento	Realinee el ensamble de la artesa y sus componentes de acuerdo a las instrucciones de montaje
	Fractura	Cambie el elemento
Artesa	Vibraciones	Ajuste los tornillos de unión correctamente al ensamble
Vigas, columnas y láminas	Deformaciones	Cambie el componente e identifique la sobre carga
estructurales	Corrosión	Recubra los elementos estructurales con pintura electrostática
Uniones o tornillos	Uniones o tornillos Vibraciones	
Motor	Sobre cargas	Reduzca las cargas a la que está sometido
Wiotor	Baja tensión	Revise las fuentes de energía
	Motor sin funcionamiento	Revise componentes del motor
Poleas	Des alineamiento	Corrija el alineamiento de las poleas, utilizando herramientas adecuadas
	Desgaste	Cambie la polea
	Grietas	1
Correas	Des alineamiento Vibraciones	Tensione la correa
33343	Desgaste	Cambie la correa

Cuadro 22. (Continuación)

Elemento	Falla	Actividad
	Sobrecalentamiento	Lubrique periódicamente los rodamientos
Rodamientos	Fatiga	Cambie el rodamiento
	Desgaste	Reduzca las cargas a la que está sometido el rodamiento y cámbielo.
		Lubricación adecuada de los
	Vibraciones	componentes que tengan contacto con el eje de transmisión
Eje	Des alineamiento	Usar las herramientas adecuadas para corregir el des alineamiento
	Fractura	Varifique les cobre carges y combie
	Deformaciones	Verifique las sobre cargas y cambie el eje
	Desgaste	ei eje

5. ESTUDIO DE IMPACTO AMBIENTAL Y COSTOS DE FABRICACIÓN DE LA MÁQUINA

5.1 ESTUDIO DE IMPACTO AMBIENTAL

Se analizarán los posibles impactos ambientales que se puede ocasionar mediante la realización de este proyecto.

Con el fin de identificar y reducir los riesgos presentes, que puedan afectar el ambiente donde estará la máquina en funcionamiento.

- **5.1.1 Método matriz de Leolpold.** Para analizar y evaluar el impacto ambiental que la máquina para la producción de almidón húmedo de Sagú genera en el medio ambiente, se implementara el método de Matriz de Leolpold, donde según GOMEZ⁸⁷, muestra la relación causa-efecto que tiene la realización de la máquina y los factores que se pueden ver comprometidos de manera tanto positiva como negativa sobre el ambiente expuesto.
- **5.1.2 Elementos de la matriz de Leolpold.** Los elementos que hay que tener en cuenta para realizar de una forma adecuada el análisis de impacto ambiental generado por la máquina, se encuentran con la siguiente ubicación, en las filas se encuentran las actividades que generan el impacto y en las columnas los elementos ambientales que se afectan.

ACTIVIDADES GENERADORAS ELEMENTOS AMBIENTALES

Figura 277. Elementos de la matriz

⁸⁷ GOMEZ, Violeta. Matriz de Leopold: para que sirve, ventajas, ejemplos. [en línea]. [Consultado 25, abril 2020]. Disponible en: https://www.lifeder.com/matriz-de-leopold/

5.1.3 Evaluación del impacto en la matriz. Se valorará cada factor analizado de la forma que sugiere GOMEZ⁸⁸, Las casillas estarán divididas por una diagonal donde se ubicará la magnitud / importancia, donde la magnitud hace referencia a que tan grande es el impacto, se evaluara con un rango de 1 – 10, siendo 1 baja magnitud y 10 mayor magnitud anteponiendo el signo + o – dependiendo si el impacto se considera positivo o negativo y la importancia hace referencia a que tan importante es el impacto (medida relativa) con respecto al medio ambiente, se evaluará con un rango de 1 – 10 positivo, siendo 1 menor importancia y 10 mayor importancia.

El valor general que tendrá cada casilla será la multiplicación de la magnitud e importancia.

⁸⁸ GOMEZ, Violeta. Matriz de Leopold: para que sirve, ventajas, ejemplos. [en línea]. [Consultado 25, abril 2020]. Disponible en: https://www.lifeder.com/matriz-de-leopold/

Cuadro 23. Matriz de Leolpold

	ACTIVIDADES		ETAPA DE INSTALACIÓN		ETAPA DE OPERACIÓN		ETAPA DE MANTENIMIENTO	
ACTIVIDADES GENERADORAS ELEMENTOS AMBIENTALES		Unión de componentes, cortes y/o acabados	Excavaciones en suelos	Consumo de agua	Residuos del proceso	Derrames de liquidos	Desmontes	
	TIERRA	Productividad	-4 8	-3 9	+4 9	+5 9	-7 9	-1 5
		Contaminación suelos	-5 7	-4 7	+2 7	+7 9	-8 9	-1 6
ш	AGUA	Contaminación	-3 6	-2 5	+2 6	+7 9	-8 9	-1 4
F		Cantidad	-2 5	-2 5	+7 9	+8 9	-8 9	-1 3
岩	AIRE	Calidad	-5 8	-2	+2 6	+7 8	-6 5	-1 3
AMBIENTE		Contaminación	-6 7	-2 5	+2 6	+5 7	-7 6	-2 4
< <		Ruido	-3 5	-3	+2 5	+2 4	-5 5	-3 4
	NATURALEZA	Animales	-4 6	-2 4	+5 7	+7 7	-7 7	-2 3
		Cultivos	-6 8	-4 6	+7 9	+8 7	-7 7	-1 3

- **5.1.4 Interpretación de la matriz.** A continuación, se determinará cuales factores causan más afectaciones al ambiente, como se evidencia el ocasionar derrames de líquidos y generar contaminantes en la instalación y mantenimiento de la máquina, afectaría el medio ambiente de manera negativa, por lo cual es de vital importancia determinar medidas de seguridad y operaciones para evitar que se causen, sin embargo, se muestra un impacto ambiental positivo en el consumo de agua y residuos del proceso, ya que, con el diseño de la máquina, se reducirán el uso de los recursos ambientales y los residuos del proceso se recolectaran para emplearlos como abono.
- **5.1.5 Medidas de mitigación de los impactos.** Las medidas de mitigación de los posibles impactos ambientales se recomiendan a continuación
 - Llevar a cabo procesos de manejo de sustancias en los distintos mantenimientos realizados a la máquina, con los correspondientes parámetros de seguridad.
 - Realizar una respectiva y adecuada limpieza en las zonas de instalación y operación de la máquina.

5.2 COSTOS DE FABRICACIÓN DE LA MÁQUINA

Se procede a realizar un análisis sobre los costos de fabricación, en el cual se tendrán en cuenta los siguientes costos:

- Costos de ingeniería
- Costos de fabricación de la maquina
- Costo de los materiales empleados

Con el fin, de obtener una estimación sobre los costos de la máquina.

5.2.1 Costos de Ingeniería.

Tabla 28. Costos de ingeniería

ITEMS	UNIDAD	VALOR UNIDAD	CANTIDAD	TOTAL
Proyectistas	Horas	\$ 7.700	510	\$ 3.927.000
Computadora	Horas	\$ 500	650	\$ 325.000
Software Solid Edge ST10	Licencia Estudiante	Gratuita	1	0
			TOTAL	\$ 4.252.000

Fuente: Elaboración propia

5.2.2 Costos de materiales.

Tabla 29. Costos de materiales

COMPONENTE	MATERIAL	VALOR UNIDAD	CANTIDAD	TOTAL
Codo de 90° estándar ½ pulgada	PVC	\$ 400	4	\$ 1.600
Codo de 90° estándar 3 pulgadas	PVC	\$ 4.200	2	\$ 8.400
Codo de 45° estándar ½ pulgada	PVC	\$ 750	2	\$ 1.500

Tabla 29. (Continuación)

COMPONENTE	MATERIAL	VALOR UNIDAD	CANTIDAD	TOTAL
Tubo ½ pulgada	PVC	\$ 2.733 x Metro	6	\$ 16.400
Tubo 3 pulgadas	PVC	\$ x 10.333 Metro	1	\$ 10.333
Válvula tipo bola ½ pulgada	PVC	\$ 5.290	1	\$ 5.290
Uniones universales ½ pulgada	PVC	\$ 3.200	2	\$ 6.400
Acople ½ pulgada	PVC	\$ 215	2	\$ 430
Acople 3 pulgadas	PVC	\$ 1.785	1	\$ 1.785
Tapón ½ pulgada	PVC	\$ 360	1	\$ 360
Tanque de suministro 100 L	Polietileno	\$ 110.000	1	\$ 110.000
Lámina Acrílico Espesor 2 mm	Acrílico	\$ 80.850 x <i>Lamina</i> 1.20mx1.80m	1.4 m^2	\$ 53.900
Lámina Acrílico Espesor 3 mm	Acrílico	\$ 109.725 x Lamina 1.20mx1.80m	$4.32 m^2$	\$ 219.450
Lámina calibre 12	Acero inoxidable 304	\$ 740.000 x <i>Lamina</i> 2.44mx1.22m	$7.2 m^2$	\$ 1.850.000
Lámina calibre 14	Acero inoxidable 304	\$ 182.400 x m ²	$8.5 m^2$	\$ 1.550.400
Lámina calibre 11	Acero HR A- 36	\$ 1.000.000 x Lamina 2.44mx1.22m	$0.34 m^2$	\$ 125.000
Lámina calibre 3/8 pulgada	Acero HR A- 36	\$ 309.000 x lamina 1mx1m	$0.1 m^2$	\$ 30.900
Lámina Calibre 3	Acero inoxidable 304	\$ 609.600 x m ²	$0.34 m^2$	\$ 207.300
Barra	Acero 1040	\$ 3000/ Kg	8.3 Kg	\$ 25.000

Tabla 29. (Continuación)

COMPONENTE	MATERIAL	VALOR UNIDAD	CANTIDAD	TOTAL
Rodamiento (SKF) + Soporte	Acero Aleado	\$ 95.000	2	\$ 190.000
Rodamiento (SKF) + Soporte de pared	Acero Aleado	\$ 115.000	2	\$ 230.000
Polea 1-3V105 SH (Intermec)	Fundición Gris	\$ 60.000	1	\$ 60.000
Polea 1-3V165 SH (Intermec)	Fundición Gris	\$ 95.000	1	\$ 95.000
Polea 1C190 SF (Intermec)	Fundición Gris	\$ 162.000	1	\$ 162.000
Polea 1C658 SF (Intermec)	Fundición Gris	\$ 300.000	1	\$ 300.000
Correa	Nylón	\$ 80.000	2	\$ 160.000
Tornillo ½ x 1 ½ pulgada Cabeza hexagonal	Acero Inoxidable	\$ 3.900	8	\$ 31.200
Tornillo M10x16 mm	Acero Inoxidable	\$ 800	36	\$ 28.800
Tornillo M10x25 mm	Acero Inoxidable	\$ 1.200	16	\$ 19.200
Tornillo M10x55 mm	Acero Inoxidable	\$ 1.500	4	\$ 6.000
Tornillo M12x55 mm	Acero Inoxidable	\$ 1.600	4	\$ 6.400
Tornillo M10x60 mm	Acero Inoxidable	\$ 1.800	26	\$ 46.800
Tornillo M10x65 mm	Acero Inoxidable	\$ 1.900	4	\$ 7.600
Tornillo M10x70 mm	Acero Inoxidable	\$ 2.000	4	\$ 8.000
Tornillo M10x80 mm	Grado 5	\$ 600	4	\$ 2.400
Tornillo M10x90 mm	Acero Inoxidable	\$ 3.300	4	\$ 13.200
Perno ½ x 1 ½ pulgada	Acero Inoxidable	\$ 3.900	4	\$ 15.600
Tuercas M10	Acero Inoxidable	\$ 424	106	\$ 45.000

Tabla 29. (Continuación)

COMPONENTE	MATERIAL	VALOR UNIDAD	CANTIDAD	TOTAL
Tuercas M12	Acero Inoxidable	\$ 581	4	\$ 2.350
Perfil estructural cuadrado 50x50x4 mm	Acero Estructural A- 36	\$ 23.000 x Metro	68 m	\$ 1.564.000
Ruedas de soporte	Nylon extrafuerte	\$ 55.000	4	\$ 220.000
Boquillas de aspersión	Metal	\$ 20.000	3	\$ 60.000
Motor Reductor 1.5 HP	N/A	\$ 1.050.000	1	\$ 1.050.000
Motor 3600 RPM 4 HP	N/A	\$ 426.000	1	\$ 426.000
Motor Reductor 1 HP	N/A	\$ 930.000	1	\$ 930.000
Bomba 1 HP	N/A	\$ 260.000	1	\$ 260.000
Cuña DIN-6885-A 12x8x70	AISI 1040	\$ 3.400	1	\$ 3.400
Cuña ½ x ½ pulgada	AISI 1040	\$ 2.000	2	\$ 4.000
Cuña DIN-6885-A 8x7x90	AISI 1040	\$ 2.750	1	\$ 2.750
Cuña DIN-6885-A 8x7x50	AISI 1040	\$ 1.800	1	\$ 1.800
Cuña DIN-6885-A 10x8x80	AISI 1040	\$ 4.600	1	\$ 4.600
Acople SPC-24- 20-F	Acero	\$ 65.000	1	\$ 65.000
Malla Mesh 80	Acero Inoxidable 304	\$ 70.000 x m ²	1 <i>m</i> ²	\$ 70.000
PLC	N/A	\$ 190.000	1	\$190.000
			TOTAL	\$10.505.548

Fuente: Elaboración propia

5.2.3 Costos de Fabricación.

Tabla 30. Costos de fabricación

PROCEDIMIENTO	VALOR TOTAL
Soldadura	\$ 1.200.000
Taladrado	\$ 70.000
Corte y acabados	\$ 650.000
Doblaje	\$ 300.000
Montaje	\$ 300.000
TOTAL	\$ 2.520.000

Fuente: Elaboración propia

5.2.4 Costos totales de diseño y fabricación de la máquina.

Tabla 31. Costos totales

COSTOS TOTALES DE DISEÑO Y F	ABRICACIÓN DE LA MÁQUINA
Costos de Ingeniería	\$ 4.252.000
Costos de Materiales	\$ 10.505.548
Costos de fabricación	\$ 2.520.000
Imprevistos 5%	\$ 863.877
COSTO TOTAL MÁQUINA	\$ 18.141.425

Fuente: Elaboración propia

6. CONCLUSIONES

- Este proyecto reduce al máximo la intervención humana, por el diseño autónomo de la máquina, generando menos riesgos laborales, esfuerzos excesivos y a su vez obteniendo un proceso continuo y con un producto de mejor calidad.
- Los resultados analizados por las matrices QFD para la selección de alternativas, lograron identificar las necesidades requeridas para este proyecto facilitando la selección del tipo de funcionamiento más satisfactorio para cada una de las etapas del proceso.
- Cada uno los componentes que conforman la máquina, su diseño o selección, se realizan especialmente para que cumplan con su correcto funcionamiento o proceso el cual estarán desarrollando y su relación sea adecuada con los otros elementos, estos son verificados por medio de cálculos, montajes y simulaciones en Software.
- Se evidencia menor gasto de energía utilizando un motor para cada una de las etapas de la máquina de almidón húmedo de Sagú, siendo liderado por un sistema de control ya que se accionan cuando el producto llega a la etapa correspondiente, por tal motivo no hay perdidas.
- La operación y mantenimiento de la máquina, es importante para su adecuado funcionamiento y su desempeño en las tareas que efectúa, evitando consecuencias de fallas en los sistemas, de esta forma los manuales diseñados de la máquina para la producción de almidón húmedo de Sagú, son indispensables para un procedimiento de trabajo optimo y duradero.
- El impacto ambiental generado por la máquina de almidón húmedo es positivo, ya que el diseño de la máquina se disminuye el uso de recursos ambientales, en comparación a los procesos que se llevan actualmente para la producción de almidón de Sagú en el municipio de Puente Quetame.
- La compañía encargada de la producción de almidón húmedo de sagú debe mantener un programa de gestión general de calidad ya que está enfocada en la industria alimenticia, gracias a esto el diseño del proyecto se enfoca en hacer uso de materiales que no afecten el producto y aislándolo de partículas o agentes extraños del medio ambiente.

7. RECOMENDACIONES

- El personal encargado de operar la máquina debe estar capacitado e informarse con los manuales correspondientes de esta, para garantizar un óptimo funcionamiento y un proceso de calidad.
- Contar con un espacio donde se encuentre un nivel adecuado en el suelo donde se posicionará la máquina para garantizar un desempeño optimo y minimizar riesgos.
- El diseño de este proyecto tiene un alcance de las siguientes etapas: lavado y extracción de impurezas del tubérculo, rallado y tamizado del almidón, sin embargo, se sugiere la realización de mejoras en las siguientes etapas del proceso de producción de almidón de sagú, principalmente la etapa del secado del almidón.
- Contar con una fuente de agua potable para la alimentación de la etapa de lavado y tamizado y a su vez con una red de alcantarillado para el desagüe de algún tipo de líquido en cierta ocasión, siempre y cuando no sea contaminante para el ambiente.
- Contar con una red eléctrica para alimentar cada uno de los componentes electrónicos de la máquina de almidón húmedo de sagú, con un voltaje común pero estable de lo contrario utilizar elementos protectores de voltaje para de esta manera garantizar la vida de los equipos.

BIBLIOGRAFÍA

AAE PROVEEDORES INDUSTRIALES. Seguridad industrial. [Sitio web]. [Consultado 25, abril 2020]. Disponible en: https://www.aeeproveedores.com/reglas-de-seguridad-para-empresa/

ACEROMEX. Catálogo de productos. [en línea]. [consultado el 5 abril, del 2020]. Disponible en: https://www.aceromex.com/assets/Aceromex_Catalogo.pdf

ADMINDEFINCA. Cosecha de productos agrícolas. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://www.fincaycampo.com/2015/08/cosecha-de-productos-agricolas/

ALBION. Lavadora rotativa. [Sitio web]. Argentina. [Consultado 25, marzo 2020]. Disponible en: http://www.albion.com.ar/es/equipos/lavadora/eq-lav-rotativa-1.html

ALIBABA. Línea de procesamiento de zanahoria. [Sitio Web]. [Consultado 25, marzo 2020]. Disponible en: https://spanish.alibaba.com/product-detail/carrot-cleaning-processing-line-carrot-cleaning-plant-60566512959.html

ALIBABA. Trituradora de doble rodillo. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://spanish.alibaba.com/product-detail/2015-baichy-hot-selling-double-roller-crusher-double-geared-roller-crusher-60189900655.html

AMAZON.es, NO BRAND Q-L. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.amazon.es/NO-BRAND-alimentaria-Recipiente-Rectangular/dp/B0819ZC975

AZEVEDO, Netto. Manual de hidráulica, Editora Edgard Blucher LTDA. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.udocz.com/read/21878/manual-de-hidraulica---azevedo-netto. ISBN: 85-212-0277-6.

Balance de energía con pérdidas de fricción. [en línea]. 2016. [Consultado 30, marzo 2020]. Disponible en: https://www.slideshare.net/alexgenez/balance-de-energa-con-prdidas-de-friccin

BARBOSA Jaime L. Dibujo mecánico. [en línea]. [Consultado 29, marzo 2020]. Capítulo 19. 8 p. Disponible en: https://es.slideshare.net/adrianperezdi/polea-y-correas

BARRETO, Segundo M. y CUSTODIO, Agapito I. Diseño de una máquina automatizada, para el lavado de zanahoria, en el centro poblado menor de Callanca, Distrito de Monsefú, Departamento de Lambayeque. [sitio web]. Tesis. Universidad Señor de Sipán. Pimentel, Perú. 2018. [Consultado 25, marzo 2020]. Disponible en: http://repositorio.uss.edu.pe/bitstream/handle/uss/4869/Barreto%20Castillo%20-%20Custodio%20Agapito.pdf?seguence=1&isAllowed=y

BUDYNAS G., RICHARD. NISBETT, KEITH. Diseño en Ingeniería Mecánica de Shigley. 8 ed. México, McGrawHill, 2008. 419 p. ISBN: 978-970-10- 6404-7.

BUITRAGO, German V. et al. Determinación de las características físicas y propiedades mecánicas de papa cultivada en Colombia. En: Revista Brasilera de Engenharia Agrícola y Ambiental. [en línea]. Brasil, 2004. Vol. 8, nro. 1. [consultado el 6 abril, de 2020]. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662004000100015. ISSN: 1807-1929.

CATÁLOGO TÉCNICO CIAT. Maquinaria y equipo tecnológico para la industria de extracción de almidón de yuca. Cali, Colombia. 1994. p. 3. [En Línea]. [Consultado 06 de noviembre 2019]. Disponible en: http://ciat-library.ciat.cgiar.org/articulos ciat/Digital/66212 EC.3 Maquinaria y equipo tec nologico para la industria de extracción de almidon de yuca.pdf

CAYCEDO, Cesar y ZAPATA, Gloria. Diseño de una máquina tamizadora de almidón y afrecho de yuca en cascada. [En línea]. Tesis. Corporación Universitaria Autónoma de Occidente. Cali, Colombia. 1993. [Consultado 25, marzo 2020]. Disponible en: https://red.uao.edu.co/bitstream/10614/3485/1/T0001375.pdf

COLMENA. Perfil Estructural Tubular. [en línea]. [consultado el 5 abril, de 2020]. Disponible

en:
http://www.tuboscolmena.com/web/fichas/ESTRUCTURAL CERRADO.pdf

COOKINOX. Que es el acero inoxidable grado alimenticio. [en línea]. Mexico. [consultado el 6 abril, de 2020]. Disponible en: https://www.cookinox.com/que-es-el-acero-inoxidable-grado-alimenticio/

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. La achira alternativa agroindustrial para áreas de economía campesina. 2003. 49 p. [En línea]. [Consultado 28, marzo 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/4071/1/La%20achira%20tec nicas%20de%20cultivo%20y%20beneficio.pdf . ISBN 958-8210-44-5.

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (arracacia xanthorriza) y ñame (Dioscorea sp.) Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3743/2/Agroindustria%20para%20la%20elaboracion%20de%20harina%20de%20achira.pdf

CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA. El Almidón de Achira o Sagú (Canna Edulis, Ker). Tibaitatá. 2003. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%200%20sagu.pdf

DHgate.com. Máquina de procesamiento de almidón de yuca. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://es.dhgate.com/product/cassava-starch-processing-machine-sweet-potato/480478370.html

DISTRIBUCIONES Y DOTACIONES R.A.C. Botas de seguridad. [Sitio web]. [Consultado 25, abril 2020]. Disponible en: https://dotacionesrac.com/producto/botas-de-seguridad-industrial-ref-olimpo/

DUNLOP. Correas de transmisión industrial. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: http://www.dunlop.com.ar/catalogos/03-catalogodecorreasindustriales.pdf

ECURED. Cultivo. [Sitio web]. [consultado el 6 abril, de 2020]. Disponible en: https://www.ecured.cu/Cultivo

Efectos fisiológicos del ruido. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://www.ehu.eus/acustica/espanol/ruido/efectos%20y%20normativa/efectos%20y%20normativa.html

EKUATIO. Volumen y área de un cilindro. Ejercicios resueltos paso a paso. [Sitio web]. [consultado el 9 abril, de 2020]. Disponible en: https://n9.cl/dtng

FRAXDESING. Momentos de inercia. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: http://joelfrax.com/otros/momentos%20inercia.html

FRUTASOLIVAR. ¿Qué es un tubérculo? ¿Qué tipos hay? ¿Cuáles son sus propiedades?. [Sitio web]. [consultado el 6 abril, de 2020]. Disponible en: https://frutasolivar.com/que-es-un-tuberculo-que-tipos-hay-cuales-son-sus-propiedades/

GALLEGOS, Erika. Centrifugación. [En linea]. 2011. [Consultado 28, marzo 2020]. Disponible en: https://pt.slideshare.net/barluc/centrifugacion-10493280/11

GESTIONDECOMPRAS. Catalogo tornilleria. [en línea]. [consultado el 9 abril, de 2020]. Disponible en:

https://www.gestiondecompras.com/files/products/mechanical_components_hardw_are/pernos_tornilleria_tuercas_arandelas_varilla_roscada_din_933_934_7989_125_127_4034_975_555_iso.pdf

GOMEZ, Violeta. Matriz de Leopold: para que sirve, ventajas, ejemplos. [en línea]. [Consultado 25, abril 2020]. Disponible en: https://www.lifeder.com/matriz-de-leopold/

HIDROMETÁLICA. Escurridor compactador sinfín. [Sitio web]. España. [Consultado 25, marzo 2020]. Disponible en: https://hidrometalica.com/escurridor-compactador-sinfin/

INGEMECANICA. Correas de transmisión cálculo y diseño. [Sitio web]. [consultado el 9 abril, de 2020]. Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn121.html

INGEMECANICA. Diseño y cálculo de las uniones atornilladas. Clases de tornillos. [Sitio web] [Consultado el 7 abril, de 2020] Disponible en: https://ingemecanica.com/tutorialsemanal/tutorialn32.html.

INSTITUTO COLOMBIANO DE NORMAS TECNICAS Y CERTIFICACIÓN. Almidón de achira. Norma NTC 3228. Bogotá D.C. El instituto. 2003.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN. Compendio de normas para trabajos escritos. NTC-1486-6166. Bogotá D.C. El Instituto, 2018. ISBN 9789588585673. 153p.

INSTITUTO NACIONAL AUTÓNOMO DE INVESTIGACIONES AGROPECUARÍAS. Raíces y tubérculos andinos: alternativas para la conservación y uso sostenible en el Ecuador. [en línea]. Quito, Ecuador. Estación experimental Santa Catalina. 2004. [consultado, 6 febrero, de 2020]. Disponible en: https://es.slideshare.net/Malu0910/races-tubandinos. ISBN: 92-9060-231-7.

INTERMEC. Manual de poleas en V. [en línea]. [consultado el 8 abril, del 2020]. Disponible en: https://es.slideshare.net/jasscons/manual-de-poleas-en-v-intermec

INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf

KAY, Daisy E. Root Crops. 2nd Edition. Natural Resources Institute. 1987, 395 p. ISBN 13: 9780859542005.

LA PALOMA. Tabla de calibres. [en línea]. [consultado el 6 abril, de 2020]. Disponible en: https://www.lapaloma.com.mx/lapaloma_metales/calibres.html LLORENS, Maribel. Propiedades caracteristicas. 2008. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://es.slideshare.net/guest0996a4/graficos-densidad

MADE-IN-CHINA. Cepillo para el lavado de papa y el jengibre. [Sitio web]. Qingdao, China. [Consultado 25, marzo 2020]. Disponible en: https://es.made-in-china.com/co_uwants/product_Brush-Washing-Machine-for-Potato-and-Ginger_esooghyiy.html

MADE-IN-CHINA. Lavadora de jengibre. [Sitio web]. China. [Consultado 25, marzo 2020]. Disponible en: https://es.made-in-china.com/co_keweijixie/product_Ginger-Washing-Machine_horghoiyg.html

MARTIN SPROCKET & GEAR, INC. Manual manejo de materiales Sección H. [en línea]. Mexico. [consultado el 15 abril, del 2020]. Disponible en: http://es.martinsprocket.com/docs//catalogs/material%20handling/2 transportadore s%20helicoidales/seccion%20h%20-%20helicoidales.pdf

MCCORMAC, Jack C. CSERNAK, Stephen F. Diseño de estructuras de acero. México: Alfaomega Grupo Editor S.A., 2012. Quinta edición. 736 p. ISBN: 978 607 707 559 2.

MENDOZA, Alvaro y ROMANO, Freddy. Correas industriales cálculo y selección. [en línea]. 25 p. [consultado el 8 abril, del 2020]. Disponible en: http://bdigital.unal.edu.co/43065/6/Correasindustriales.pdf

METHODS, Haestad, *et al.* Computer Applications in Hydraulic Engineering. U.S.A. 2002. Fifth edition. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://es.slideshare.net/cosmeacr/coeficientes-de-rugosidad-haestad. ISBN 10: 0971414149.

MINISTERIO DE AGRICULTURA Y GANADERIA. Santa Isabel, en Azuay, produce almidón de achira. Ecuador. 2019. [en línea]. [consultado el 6 febrero, de 2020]. Disponible en: https://www.agricultura.gob.ec/santa-isabel-en-azuay-produce-almidon-de-achira/

MONGE, Miguel A. IAGUA, Algunas observaciones a las instalaciones con equipos de bombeo. [en línea]. España. 2018. [Consultado 30, marzo 2020]. Disponible en: https://www.iagua.es/blogs/miguel-angel-monge-redondo/algunas-observaciones-instalaciones-equipos-bombeo

MOTT, Robert L. Mecánica de fluidos aplicada. México, Pearson Education, 1996. Cuarta edición. 567 p. ISBN: 9688805424

MOTT. Robert L. Diseño de elementos de máquinas. Editorial Pearson. Cuarta Edición. México. 2006. 950 p. ISBN: 9688805750

MUJUMDAR, Arun S. Handbook of Industrial Drying. [en línea]. Editorial CRC Press, Taylor & Francis Group. 2015. [consultado el 6 abril, de 2020]. Capítulo 7. 151 p. Disponible en: http://www.cementechnology.ir/Library/Chem.3.pdf . ISBN: 978-1-4665-9665-8.

NORD. Catálogo NordBloc.1. [en línea]. [consultado el 6 abril, de 2020]. Disponible en

https://www.nord.com/cms/media/documents/bw/US_G1013_Nordbloc_Catalog_2719.pdf

NORTON, Robert L. Diseño de máquinas. México: Pearson Educación, 2011. Cuarta edición. 888 p. ISBN: 978-607-32-0589-4

PAVCO. Manual técnico tubosistemas PRESIÓN PVC. [en línea]. 7 p. [Consultado 30, marzo 2020]. Disponible en: https://www.nalelectricos.com.co/archivos//PAVCO-presion-PVC.pdf

PDCAHOME. Despliegue de la función calidad (QFD): Guia de uso. Para que sirve el QFD y como realizarlo. [En linea]. [Consultado 25, abril 2020]. https://www.pdcahome.com/1932/qfd-despliegue-calidad/

PEDROLLO. Electrobombas Centrifugas. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.slideshare.net/LEVRental/pedrollo-modelo-2cp

Prevención de accidentes con máquinas. [en línea]. [Consultado 25, abril 2020]. Disponible en: http://tusaludnoestaennomina.com/wp-content/uploads/2016/02/prevencion-accidentes-con-maquinas-PARA-PYMES.pdf

PROCURADURÍA GENERAL DE LA REPÚBLICA. Sistemas de agua fría y agua caliente. [en línea]. Costa Rica. [Consultado 31, marzo 2020]. Disponible en: http://www.pgrweb.go.cr/DOCS/NORMAS/1/VIGENTE/R/2010-2019/2015-2019/2017/14669/1153AA.HTML

PUERTO, Efrain. Presión atmosférica. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://efrainpuerto.wordpress.com/2011/02/26/f1-2/

Relación de velocidades sistema de poleas con correa. [Sitio web]. [consultado el 9 abril, del 2020]. Disponible en: https://eudotec.wordpress.com/2013/03/06/relacion-de-velocidades/

RUEDASALEX. Catalogo ruedas Alex. [en línea]. 84 p. [Consultado 30, marzo 2020]. Disponible en: https://baselgalizaga.com/img/cms/documentos/catalogo/alex/catalogo ruedas alex.pdf

RULAND. Acople rígido SPC-24-20-F. [Sitio web]. [consultado el 19 abril, de 2020]. Disponible en: https://www.ruland.com/spc-24-24-f.html

SECOES. Normativa equipos de protección ocular. [Sitio web]. [Consultado 25, abril 2020]. Disponible en: https://www.equipodeproteccionindividual.com/normativa-equipos-proteccion-ocular-gafas-pantallas-y-filtros-proteccion/

SIEMENS. Catálogo de motores. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://assets.new.siemens.com/siemens/assets/api/uuid:782b04d0-82f4-488a-936b-

514cd8bb5d5f/version:1580149154/arteimpresioncatalogosimotics.pdf

SIENKO, M. J.; Plane, R. A. Química. Editorial Aguilar, Barcelona, 1967. [en línea]. [Consultado 30, marzo 2020]. Disponible en: http://docencia.udea.edu.co/cen/tecnicaslabquimico/03anexos/anexo05.htm

SKF. Rodamientos. [en línea]. [consultado el 1 mayo., del 2020]. Disponible en: https://www.skf.com/binary/86-121486/10000_2-ES---Rolling-bearings.pdf

SKF. Rodamientos. [en línea]. [consultado el 1 mayo., del 2020]. Disponible en: http://www.skftraining.info/binary/96-129182/0901d196802a2b8f-13728-EN-Y-bearing-and-Y-b-units.pdf

SLIDESHARE. Sistema de transmisión de poleas con correa. 2012. [en línea]. [Consultado 29, marzo 2020]. Disponible en: https://es.slideshare.net/AlanMontalvo/sistemas-de-transmisin-de-poleas-concorrea

SLIDESHARE. Transmisión por correas. [en línea]. [consultado el 9 abril, de 2020]. Disponible

https://www.slideshare.net/ALBERTOFLORESSANTAND/transmision-por-correas-62985739

SPRAYINGSISTEMS. Herramienta SprayWare, Calculadora de cobertura de aspersión. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.mx/sprayware/Spray_coverage_calculator.aspx

SPRAYINGSISTEMS. Sección B - Boquillas de aspersión de cono lleno. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.co/Assets/MX/cat70m-es b.pdf

TIPÁN, Edwin y ROMÁN, Felipe. Diseño y construcción de una lavadora de malanga de 2000 Kg/h de capacidad. [En linea]. Proyecto previo para la obtención del título de Ingeniero mecánico. Quito, Ecuador. Escuela politécnica nacional. 2011. [Consultado 25, marzo 2020]. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/3958

TORRES, Luis J. Tecnología para el cultivo de Sagú o Achira (Canna edulis Ker). Cundinamarca. 2004. 39 p. [En línea]. [Consultado 28, marzo 2020]. Disponible en: https://repository.agrosavia.co/bitstream/handle/20.500.12324/2117/41262_27346.pdf?sequence=1&isAllowed=y . ISBN 958-8210-56-9.

UNIVERSOFORMULAS. Área de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-cilindro/

UNIVERSOFORMULAS. Área del círculo. [Sitiio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/area-circulo/

UNIVERSOFORMULAS. Teorema de Pitágoras. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/teorema-pitagoras/

UNIVERSOFORMULAS. Volumen de un cilindro. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-cilindro/

UNIVERSOFORMULAS. Volumen de un tronco de pirámide. [Sitio web]. [Consultado 28, marzo 2020]. Disponible en: https://www.universoformulas.com/matematicas/geometria/volumen-tronco-piramide/

ANEXOS

ANEXO A

Planos Ver archivos adjuntos

ANEXO B

Especificaciones de las Ruedas de Soporte del sistema de lavado

Fuente: Elaboración propia con base en: RUEDASALEX. Catalogo ruedas Alex. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://baselgalizaga.com/img/cms/documentos/catalogo/alex/catalogo_ruedas_alex.pdf

ANEXO C

Especificaciones de la boquilla de aspersión para el sistema de lavado

DATOS DE DESEMPEÑO

*A la presión indicada en bar.

				Tip	o de	Boqui	lla				Diam.	Diam.					Capacidad							gulo	
Conexión Entrada (pulg.)	1	īpo E	stánd	lar		Monta en Par		Án	gulo	Tamaño	Nominal Orificio	Máximo Paso Libre						minu	to)*				As	persi (°)*	ón
(puig.)	G	GG	Н	НН	GD	HD	GGD	GA	GGA		(mm)	(mm)	0.4	0.5	0.7	1.5	2	3	4	6	7	10	0.5	1.5	6
	•	•		•	•		•			1	.79	.64	.29	.33	.38	.54	.62	.74	.85	1.0	1.1	1.3	-	58	53
	•	•		•						1.5	1.2	.64	.44	.49	.57	.81	.93	1.1	1.3	1.5	1.6	1.9	52	65	59
	•	•		•	•		•	•	•	2	1.2	1.0	.59	.65	.76	1.1	1.2	1.5	1.7	2.0	2.2	2.6	43	50	46
1/8	•	•		•	•		•	•	•	3	1.5	1.0	.88	.98	1.1	1.6	1.9	2.2	2.5	3.1	3.3	3.9	52	65	59
1/0	•	•		•	•		•	•	•	3.5	1.6	1.3	1.0	1.1	1.3	1.9	2.2	2.6	3.0	3.6	3.8	4.5	43	50	46
								•	•	3.9	2.0	1.0	1.1	1.3	1.5	2.1	2.4	2.9	3.3	4.0	4.3	5.1	77	84	79
	•	•		•	•		•	•	•	5	2.0	1.3	1.5	1.6	1.9	2.7	3.1	3.7	4.2	5.1	5.5	6.5	52	65	59
								•	•	6.1	2.3	1.3	1.8	2.0	2.3	3.3	3.8	4.5	5.2	6.2	6.7	7.9	69	74	68
	•	•		•	•		•	•	•	6.5	2.4	1.6	1.9	2.1	2.5	3.5	4.0	4.8	5.5	6.7	7.1	8.4	45	50	46
1/4	•	•		•	•		•	•	•	10	3.2	1.6	2.9	3.3	3.8	5.4	6.2	7.4	8.5	10.2	11.0	13.0	58	67	61
								•	•	12.5	3.2	1.6	3.7	4.1	4.8	6.8	7.7	9.3	10.6	12.8	13.7	16.2	69	74	68
	•	•		•	•		•	•	•	9.5	2.6	2.4	2.8	3.1	3.6	5.1	5.9	7.1	8.1	9.7	10.4	12.3	45	50	46
3/8	•	•		•	•		•	•	•	15	3.6	2.4	4.4	4.9	5.7	8.1	9.3	11.2	12.7	15.4	16.5	19.4	64	67	61
3/0								•	•	20	4.0	2.8	5.9	6.5	7.6	10.8	12.4	14.9	17.0	20	22	26	76	80	73
	•	•		•				•	•	22	4.5	2.8	6.5	7.2	8.4	11.9	13.6	16.4	18.7	23	24	28	87	90	82
	•	•			•		•	•	•	16	3.5	3.2	4.7	5.2	6.1	8.7	9.9	11.9	13.6	16.4	17.6	21	48	50	46
	•	•		•	•		•	•	•	25	4.6	3.2	7.4	8.2	9.5	13.5	15.4	18.6	21	26	27	32	64	67	61
1/2	•	•						•	•	32	5.2	3.6	9.4	10.4	12.2	17.3	19.8	24	27	33	35	41	72	75	68
	•	•		•				•	•	40	6.2	3.6	11.8	13.1	15.2	22	25	30	34	41	44	52	88	91	83
								•	•	50	6.7	4.0	14.7	16.3	19.1	27	31	37	42	51	55	65	91	94	86
			•	•		•				2.5	4.9	4.4	8.7	9.6	11.2	15.9	18.2	22	25	30	32	38	48	50	46
3/4			•	•		•				4.0	6.4	4.4	13.9	15.4	18.0	26	29	35	40	48	52	61	67	70	63
			•	•		•				7.0	9.5	5.2	24	27	31	45	51	61	70	84	91	107	89	92	84
			•	•		•				4.2	6.0	5.6	14.6	16.2	18.9	27	31	37	42	51	54	64	48	50	46
			•	•		•				7.0	8.3	5.6	24	27	31	45	51	61	70	84	91	107	67	68	62
1			•	•						8.0	9.5	5.6	28	31	36	51	58	70	80	97	104	122	72	81	82
			•	•						10	11.9	5.6	35	38	45	64	73	88	100	121	130	153	78	90	94
			•	•						12	11.9	6.4	42	46	54	77	87	105	120	145	155	183	89	92	84

El Diámetro de Máximo Paso Libre es el diámetro máximo de materia que puede pasar a través de la boquilla sin taparla.

DIMENSIONES Y PESOS

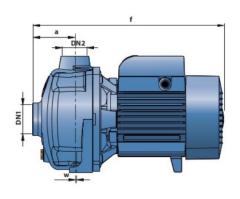
Estándar	Tipo de Boquilla	Conexión Entrada (pulg.)	Longitud (mm)	Diam. (mm)	Hex. (mm)	Peso Neto (kg)
		1/8	31	-	14.3	.03
	G	1/4	37.5	-	17.5	.04
	(H)	3/8	46	-	20.6	.07
للاسا		1/2	57	-	25.4	.17

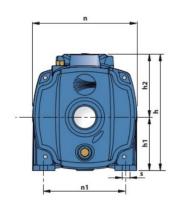
MATERIALES

Material	Código de	Tipo de Boquilla											
Material	Material	G	GG	Н	HF	НН	GD	HD	GGD	GA	GGA		
Barra:													
Bronce	(sin código)	•	•	•		•	•	•	•	•	•		
Acero Dulce	I	•	•	•		•	•	•	•	•	•		
Acero Inoxidable 303	SS	•	•	•		•	•	•	•	•	•		
Acero Inoxidable 316	316SS	•	•	•		•							
Polipropileno†	PP			•									
Cloruro de Polivinilo	PVC	•	•	•		•							
Fundición:													
Bronce	(sin código)			•	•								
Hierro Fundido	ı			•	•								
Acero Inoxidable 316	SS			•	•								

[†]Polipropileno solo disponible para el modelo H con conexiones de entrada de 1-1/2" y 2".

Fuente: Elaboración propia con base en: SPRAYINGSISTEMS. Sección B - Boquillas de aspersión de cono lleno. [en línea]. [Consultado 30, marzo 2020]. Disponible en: https://www.spray.com.co/Assets/MX/cat70m-es_b.pdf


Algunos modelos están disponibles en Kynar®. Otros materiales disponibles bajo pedido.


Para más detalles, ver Sección K, Boquillas de Aspersión para Aplicaciones Especiales o contacte a su representate local de ventas.

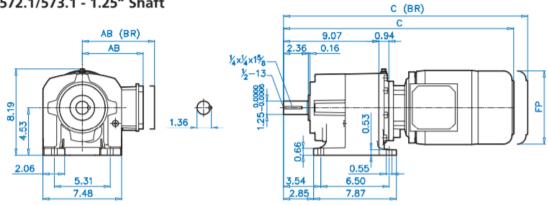
ANEXO D

Dimensionamiento y especificaciones de la Bomba para el sistema de lavado

DIMENSIONES Y PESOS

МО	MODELO BOCAS			DIMENSIONES mm								2	kg		
Monofásica	Trifásica	DN1	DN2	a	f	h	h1	h2	n	n1	w	s	1~	3~	
2CPm 25/130N	2CP 25/130N	11/4"	1"	73	330	201	92	109	180	142	1	10	14.5	14.0	

			CONSUMO	EN AMPERIOS								
MODELO TENSION (monofásica)				MODELO	TENSION (trifásica)							
Monofásica	230 V	240 V	110 V	Trifásica	230 V	400 V	690 V	240 V	415 V	720 V		
2CPm 25/130N	6.3 A	6.0 A	12.6 A	2CP 25/130N	4.6 A	2.6 A	1.5 A	4.3 A	2.5 A	1.5 A		


Fuente: Elaboración propia con base en: PEDROLLO. Electrobombas Centrifugas. [en línea]. [Consultado 31, marzo 2020]. Disponible en: https://www.slideshare.net/LEVRental/pedrollo-modelo-2cp

ANEXO E

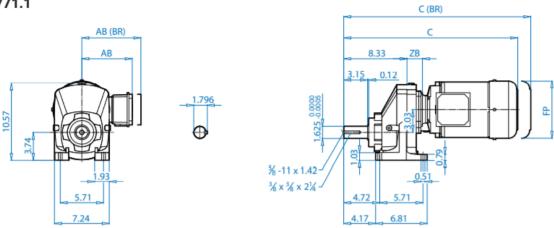
Dimensionamiento de los motores reductores del sistema de lavado y sistema de tamizado respectivamente

Motor reductor sistema de lavado

SK 572.1/573.1 - 1.25" Shaft

Mounting Flange

BD (mm)	AJ	Д	K	BB	BF	GA	QA
5.51 (140)*	4,528	3,740	+0.0005 -0.0004	0,12	0,35	0,35	10,37
6.30 (160)*	5,118	4,331	+0.0005	0,14	0,35	0,39	10,37
7.87 (200)	6,496	5,118	+0.0006 +0,0004	0,14	0,43	0,47	9,07
9.84 (250)	8,465	7.087	+0.0006	0.16	0,53	0,59	9,07
11.81 (300)	10,433	9,055	+0.0006	0,16	0,53	0,71	9,07

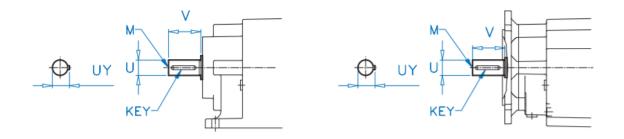

Motor Dimensions

Standard efficiency	63S/L	71S/L	80S/L	90S/L	100L	112M	
Premium efficiency			80LP	90SP/LP	100LP		112MP
AB	4,51	4,86	5,59	5,79	6,65	7,05	7,05
AB (BR)	4,84	5,24	5,59	5,79	6,77	7,17	7,17
С	17,77	19,35	20,33	21,91	23,13	24,00	24,99
C (BR)	19,98	21,63	22,85	24,86	26,73	27,70	28,69
C*	19,07	20,65	21,63	23,20	24,43	25,30	26,29
C* (BR)	21,28	22,93	24,15	26,16	28,03	29,00	29,99
FP	5,08	5,72	6,43	7,19	7,90	8,87	8,87

^{*} When using the 5.51 (140) flange or the 6.30 (160) flange, the C and QA dimensions become larger. (BR) Denotes Brakemotor

Motor reductor sistema de tamizado

SK 771.1

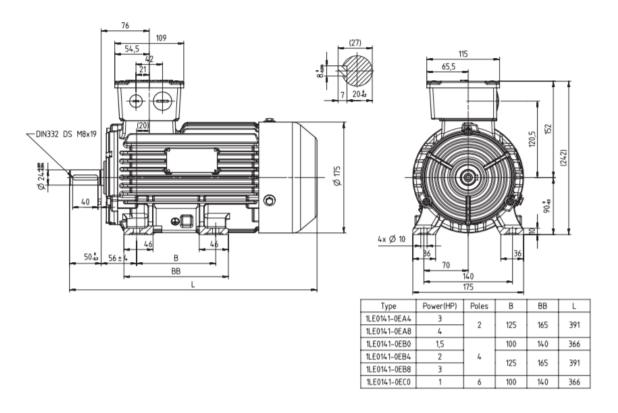

Mounting Flange

	•					
BD (mm)	AJ	Α	K	BB	BF	GA
6.30 (160)	5,118	4,331	+0.0005 -0,0004	0,14	0,35	0,39
7.87 (200)	6,496	5,118	+0.0006 -0,0004	0,14	0,43	0,47
9.84 (250)	8,465	7,087	+0.0006 -0,0004	0,14	0,53	0,59

Motor Dimensions

motor Dimensions							
Standard efficiency	71S/L	80S/L	90S/L	100L	112M		132S/M
Premium efficiency		80LP	90SP/LP	100LP		112MP	132SP/MP
AB	4,86	5,59	5,79	6,65	7,05	7,05	8,03
AB (BR)	5,24	5,59	5,79	6,77	7,17	7,17	7,91
С	19,19	20,17	21,75	22,97	23,84	24,83	27,26
C (BR)	21,47	22,69	24,70	26,57	27,54	28,53	31,47
FP	5,72	6,43	7,19	7,90	8,87	8,87	10,45
ZB	1,56	1,56	1,56	1,56	1,56	1,56	1,79

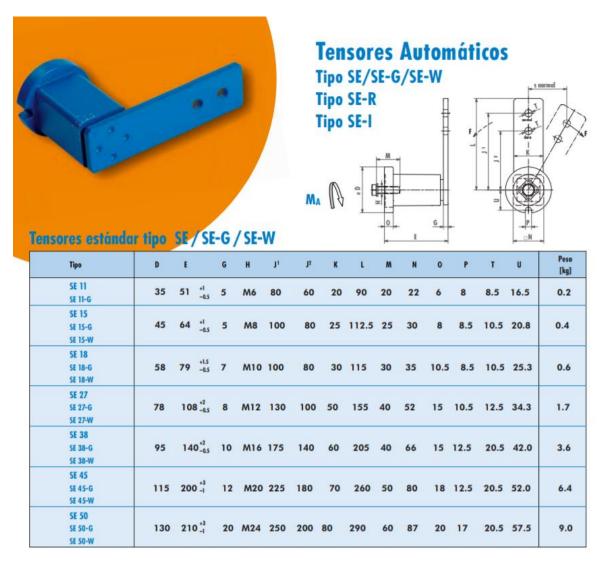
(BR) Denotes Brakemotor


Туре	U	UY	KEY	V	M Tap
SK 071.1	15	17.0	5 x 5 x 25	30	M5 x 12.5
SK 072.1	20	22.5	6 x 6 x 32	40	M6 x 16
SK 171.1	20	22.5	6 x 6 x 32	40	M6 x 16
SK 172.1	20	22.5	6 x 6 x 32	40	M6 x 16
SK 371.1	25	28.0	8 x 7 x 40	50	M10 x 22
SK 372.1	25	28.0	8 x 7 x 40	50	M10 x 22
SK 373.1					
SK 571.1	30	33.0	8 x 7 x 50	60	M10 x 22
SK 572.1*	30	33.0	8 x 7 x 50	60	M10 x 22
SK 573.1*					
SK 572.1*	35	38.0	10 x 8 x 60	70	M12 x 28
SK 573.1*					
SK 672.1	35	38.0	10 x 8 x 60	70	M12 x 28
SK 673.1					
SK 771.1	40	43.0	12 x 8 x 70	80	M16 x 36
CV 772.4					

Fuente: NORD. Catálogo NordBloc.1. [en línea]. [consultado el 9 abril, de 2020]. Disponible en:

https://www.nord.com/cms/media/documents/bw/US_G1013_Nordbloc_Catalog_2719.pdf

ANEXO F


Dimensionamiento del Motor del sistema de rallado

Fuente: SIEMENS. Catálogo de motores. [en línea]. [consultado el 9 abril, de 2020]. Disponible en: https://assets.new.siemens.com/siemens/assets/api/uuid:782b04d0-82f4-488a-936b-514cd8bb5d5f/version:1580149154/arteimpresioncatalogosimotics.pdf

ANEXO G

Dimensionamiento del brazo rotativo o tensor del sistema de rallado

Fuente: INTERMEC. Tensores automáticos Rosta. [en línea]. [consultado el 9 abril, de 2020]. Disponible en:

https://www.intermec.com.co/tensores/Manual%20Tensores%20Rosta.pdf