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Abstract 

The heterogeneous reservoirs are common in the world being a non-uniform and non-linear spatial distribution of rock 

properties such as porosity, permeability, and oil, gas, and water saturation. The petroleum industry offers limited options 

to predict effective locations for water injector wells in a heterogeneous reservoir. The leading country using artificial 

intelligence is China and it is being implemented in different sectors of daily life such as medicine and surveillance among 

others. The oil and gas industry use of this kind of tools is very new with a significant potential. Based upon machine 

learning this study predict the fluid responses approach to changes in the injector well locations, the algorithm is trained to 

evaluate the oil production using a series of complex patterns changing the code to make accurate decisions. The 

characterization of these parameters in hydrocarbon-bearing rocks is the main topic of this study, based on these properties 

and focusing on pairwise connectivity between water injector wells and oil producers. Using artificial intelligence, the data 

analysis reduces the human factor bias starting to manage a big amount of data within a shorter period of time. 

Water injection is used in heterogeneous reservoirs to maintain the pressure underground and pump the fluids into the 

surface using the production wells, this technique can obtain around the 60% recovery of the original oil in place being an 

effective alternative whenever the right decisions are made. The machine learning process begins with a static and dynamic 

model using a specialized software to obtain the initial data from the well-known reservoir behavior of the Colombian oil 

basin “Caguan, Putumayo”. With this information, the algorithm XGBoost is coded in Python using some of the available 

libraries that allow the user a better and effective approach. The model used is called “supervised learning”; a task is given 

to the machine by assigning a pair of output and input for each sample given. As the name implies using training data will 

help the system to obtain and identify patterns that will lead to solve the mentioned task while being supervised by the user 

and obtaining a result that should match the data. Finally, three different scenarios this research are performed to determine 

the success of the process considering the production forecast. 

In conclusion, the results obtained by the algorithm, compared with the running simulations, show a considerable 

improvement in production, showing that the predictions are useful for decision-making. In the same way, the algorithm 

considered some variables more relevant than others, making a comparison for each study scenario, resulting in the water 

saturation for scenario 1, being important when representing the amount of water that will displace the hydrocarbons within 

the reservoir. , the permeability for scenario 2, being vital to determine the way in which the fluids move within the pores 

of the rock and the location of the wells for scenario 3, being the central core of the investigation. 

 

1. Introduction 

 

 Heterogeneous reservoirs are common in the world 

being a non-uniform and non-linear spatial distribution 

of rock properties such as porosity, permeability and 

saturations (oil, gas and water). The petroleum industry 

offers limited options to predict effective locations for 

water injector wells in a heterogeneous reservoir. 

The Caguan-Putumayo Basin, is characterized by two 

different structural provinces, described as a folded zone 

and a geologic fault against the Colombian Andes, a 

relatively plane zone and stable located against the 

Guayana shield (Govea R & Aguilera B., 1980). The 

average recovery factor in Colombia is around 21% 

(Agencia Nacional de hidrocarburos, 2016), so it is 

important to improve this factor to increase the oil 

production in the zone, compared with different 

countries around the world 

Secondary recovery (SR) is a strategy used in order to 

increase or maintain the energy of the reservoirs to 

improve the volume of hydrocarbons extracted when 

there is a decline in the natural energy of primary 

production. The injection of water is the most common 

SR in the industry due to the ease of obtaining injected 

fluids (sometimes the same formation water) as it 

physically displaces the oil. In a completely developed 

oil or gas field, wells may be drilled anywhere from 60 

to 600m (200–2000ft) horizontally from each other, 

depending on the nature of the reservoir (Denis, 2019). 

Fluid recovery after this kind of mechanism is estimated 

to be between 30-50%. (Espinosa Berdugo & Torres 

Orellano, 2015) 

It is important to assess new tools that explore different 

solutions regarding to conventional problems that oil and 
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gas industry is struggling. To reduce a large percentage 

of uncertainty, they need to process big data volumes that 

corresponds to different well and production data 

available, reducing the high confidence in traditional 

methods. Using the development of easily accessible 

tools, both economically and technically, obtaining 

satisfactory results, it is common to use specific 

machinery that requires special treatment to operate at 

full capacity. Artificial intelligence is used globally to 

identify patterns that could indicate possible damages 

before it happens giving space to predictive maintenance. 

In the modern world everything around us is related to a 

data source, machines are very effective analyzing and 

recognizing patterns inside it, the machine-learning 

model predictions make possible to obtain precise 

evaluation about the likely outcomes of a question, based 

on historical data, such as the production and injection 

rate. The system learns autonomously as it is fed with 

data, each iteration helps to reduce uncertainty and risk, 

using a technique called “supervised learning” that 

reduces human intervention to a minimum, as well as 

their errors. The supervised learning would 

automatically evaluate the optimal behavior in a 

particular context or environment, improving its 

efficiency. This type of learning is based on, a task that 

is given to the machine and in this research they would 

learn to assign the most optimal position for the injection 

well. As the name implies, using training data will help 

the system to obtain and identify patterns that will lead 

to solve the mentioned task while being supervised by 

the user and obtaining a result that should match the data  

(Sarker, 2021). Likewise, it would be possible to 

determine if some producing wells might become 

injectors to optimizing field production, increasing the 

recovery factor and the drained area.  

Extreme Grandient Boosting is the most used 

algorithm currently of the supervised type; is a scalable, 

sparsity-aware and made for tree boosting, it is 

characterized by obtaining good prediction results more 

efficiently than model simulations with a more complex 

code. XGBoost is a useful tool to save time and 

resources, supports different languages and 

programming environments. It can also be used as a data 

driven tool in multiple applications, (Sampaio, Ferreira 

Filho, & Abelardo, 2009) applied a feed-forward neural 

networks as nonlinear proxies of reservoir simulation. 

This network can represent the multidimensional surface 

responses in a heterogeneous reservoir model.  (Paras, 

Suet - Peng, Pao, & Paul, 2014) an application of 

Surrogate Reservoir Model (SRM) for predicting the 

Bottom-Hole Flowing Pressure (BHFP) at different time 

step for an initially under-saturated reservoir, using a 

SRM is based on Artificial Neural Network to regenerate 

the results of a numerical simulation model in 

considerable amount of time. 

 

2. Methodology. 

 

This study use data acquired in Putumayo Basin, 

includes general geological features of the reservoir and 

well models with a static and dynamic analysis. The 

information is analyzed and classified to use only 

relevant data, and dismiss repeated data with a high level 

of uncertainty or located outside the range of interest. 

Later, a part of the information is selected to be in the 

“learning” stage, the remainder information is left for the 

“implementation” stage, this part of the process is done 

automatically by the system without intervention of the 

user. 

 
Figure 1. Workflow for the algorithm. 

 

For injections purposes well to well, connectivity 

property is the base to determinate the behavior of 

hydrogeological processes in the reservoir. Generally, 

connectivity is not considered as a relevant factor in the 

reservoir, being omitted due to the importance of 

permeability, since this is a representation of the 

movement of fluids in the porous medium. Although, 

considering that our study focuses on the location of the 

wells, a variable that directly related these concepts had 

to be taken into account in order to obtain more precise 

results. 

Subsequently Python software and its Visual Studio 

Code graphical interface must be downloaded. Specific 

extensions are prepared by downloading libraries using 

commands for their correct activation, these libraries 

include: 

 

Extension Description 

XGBoost Accurately predict a target variable 

Pandas Analyze, manipulate and organize 

data with rows and columns 

Sklearn Offers algorithms for classification, 

regression and data analysis. 

Urlib Used to work with URL’s facilating 

the handling  

Numpy Main library for scientific informatics 

Matplotlib Graphics generation 

mailto:sebastian.granobles@estudiantes.uamerica.edu.co
mailto:henao.adriana@profesores.uamerica.edu.co


 

1. laura.romero5@estudiantes.uamerica.edu.co 

2. sebastian.granobles@estudiantes.uamerica.edu.co 

3. henao.adriana@profesores.uamerica.edu.co 

4. arian.sarmiento@profesores.uamerica.edu.co 

Table 1. Python extensions used. 

 

After the libraries are ready, the XGBoost algorithm 

and the representative percentage of the data set are 

destined for training, the learning stage begins to identify 

the patterns that will lead to a prediction. 

Then predictive model is implemented using the 

remaining percentage of the dataset to evaluate the 

accuracy of the learning stage and thus allow the system 

to work autonomously. An error analysis is carried out 

that allows modeling and changing some aspects that are 

not relevant to the project, this step is the most important, 

since it determines the quality of the results that will be 

obtained later. 

Afterward the results will be obtained, analyzed and 

classified depending on their effectiveness to determine 

the success of the project, the positions found will be 

represented on a scale map of the reservoir that will 

include the proposals for the new wells established in the 

implementation stage. 

A second simulation will be made in the input system 

(CMG) where the initial production forecasts will be 

compared against those obtained in the research and thus 

know if it is feasible to apply the model for decision 

making as a primary mechanism that turns out to be 

economic and convenient. 

 

3. Calculation. 

 

Through the research it was necessary to make some 

calculations, to make sure that the reservoir is 

heterogeneous we used the Dykstra Parsons equation, to 

insert the data in Python. It was necessary to make 

calculation of some variables such as the harmonic 

permeability, the fluids mobility, the operational 

connectivity, and the production rate. 

The Dykstra Parsons equation considers an important 

statistical parameter to characterize heterogeneity, this 

coefficient varies between zero and one, with a 

completely uniform system having a value of zero (Arya, 

Hewett, Larson, & Lake, 1988). 

 

𝑉𝐷𝑃 =
𝑘0,5−𝑘𝜎

𝑘0,5
 (1) 

Where VDP is the heterogeneity coefficient, K0,5 median 

permeability (value with 50% frequency of occurrence) 

and Kσ is t permeability at 84.1 % of the cumulative 

sample. 

The fluids mobility is designated by the letter M and is 

defined as the mobility of the fluids, allowing to evaluate 

the effective permeability in each phase (Ferrer, 2001). 

𝑀 =
𝑘𝑤

𝜇𝑤
⁄

𝑘𝑜
𝜇𝑜

⁄
 (2) 

Where Kw is the water relative permeability, Ko is the 

oil relative permeability, μw is the water viscosity and μo 

as the oil viscosity. 

To consider the permeability within the variables used 

for Python a calculation of an average permeability was 

necessary, using the values for each direction (i, j, k) a 

harmonic average was obtained with the following 

equation. 

 

𝐾𝑒𝑓𝑓 =
1

1

𝐾𝑖
+

1

𝐾𝑗
+

1

𝐾𝑘

 (3) 

 

Where Ki is the permeability in the horizontal axis, Kj 

represents the vertical axis and Kk is the depth axis 

(Bajpai, 2010). 

There are four types of connectivity: geological, 

mechanical, operative, and dynamic.  

The geological connectivity is the classification of 

reservoirs from the structural and stratigraphic point of 

view using 3D seismic in the CMG software, producing 

layers and the presence of faults. Mechanical 

connectivity refers to the availability of producing layers 

in wells injectors and producers. For this purpose, a 

careful review of the history of interventions opening / 

isolation of each of the intervals cannonaded from each 

well. Although, Operational connectivity refers well 

connectivity observed experimentally, the field model is 

processed on a software, where experimental process 

was not made. 

Using the connectivity measure presented by (Gomez-

Hernandez, Carrera, & Sanchez-Vila, 2002) considering 

the exponent for power averaging of permeabilities. 

 

𝐾𝑒𝑓𝑓 = [
1

𝑉
∫ 𝐾(𝑥)𝑐𝑑𝑉

𝑉
]

1

𝑐
 (4) 

 

Where V is the volume of the cell, x is the location in 

space. Keff is the harmonic permeability calculated before 

and c is the connectivity (Knudby & Carrera, 2004).  

The final calculation made was for the injection rate 

that will affect the reservoir considering that it is directly 

proportional to the production rate. 

 

𝑞𝑗𝑘 =  𝑞𝑗𝑘−1𝑒
−(

𝛥𝑡

𝜏𝑗
)

+ ∑ 𝑓𝑖𝑗𝑖𝑖𝑘 (1 − 𝑒
−(

𝛥𝑡

𝜏𝑗
)

)𝑖  (5) 

 

Where qjk is the production rate of producer j at time k, 

i denotes injection rate, Δt is the time step, and τ is a time 

constant measure as defined in (Sayarpour, Zuluaga, 

Kabir, & Lake, 2007) 𝑓𝑖𝑗  is a  ‘gain’, which is the fraction 

of flow from injector i towards producer j at steady state 

flow. This can be interpreted within this context as a 

measure of connectivity between injector i and producer 

j, because its formulation hinges solely on historical 

injection and production rates (Nwachukwu, Jeong, 

Pyrcz, & Lake, 2017) 

 

4. Results and discussion. 

 

The project accuracy was evaluated with three 

different scenarios, to determine the best locations in the 
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reservoir. These scenarios were considered with the 

number of available wells in a determined moment of 

time and as a result, the number of wells (input data) 

were, 9, 12 and 15. Each case was evaluated with values 

of time, feature score, and the error. 

 

 

 

Training data R2 (Training data) R2 (Testing data) 

9 wells 0.999 -2.049 

12 wells 0.999 0.964 

15 wells 0.999 0.938 
Table 2. Scenario performance 

 

The accuracy is determined depending on the 

difference between each value of R2, the higher this 

difference is, higher will be the uncertainty for each case. 

The model used in Python will consider a different set 

of variables that are relevant, these features will be 

determined automatically by the system and change for 

each case. 

 

Scenario number 1: In this scenario the training data 

were 9 wells, and the most important feature is the initial 

water saturation (Figure 2), considering this variable is 

the fraction of the pore volume of water compared with 

the available space within the rock total pore volume. 

Assuming this volume is either filled with water, oil or 

gas, water saturation must be measured or estimated for 

the reservoir characterization and it is the most 

challenging petrophysical calculation for estimating 

hydrocarbon-in-place (Cui, 2015).  

To estimate the optimal locations the algorithm took 

2,59 seconds,as a result, we obtained the coordinate of a 

single injector well represented in figure 3 using the 

CMG simulator, the injection rate was obtained as well, 

in this case 238 BBL/day. 

 

 
Figure 2. Feature importance score, Scenario 1 

 

 
Figure 3. Well location Scenario 1 

 
Analyzing the data results it is possible to see that the 

testing data tendency (R2) compared with the training 

data tendency (R2) have the biggest difference between 

each other, within all the scenarios. Comparing the initial 

simulation with the model, where the respective drilled 

well is already located in figure 3, it is not possible to see 

a representative difference in the prediction of 

production from the reservoir as it is shown in the figure 

4, the blue line represents the original production without 

the new well, by the other hand, the red line is the new 

production with the injection well. 

The prediction for 9 wells is lower than the original file 

as there is less wells to consider, this was made taking in 

consideration that some wells were too old to be 

considered in the new prediction. 

 

 
Figure 4. Oil production (9 wells Vs Original model) 

Scenario number 2: In this scenario the training data 

were 12 wells, and the most important feature is the 

harmonic permeability (Figure 5), this value is important 

in the injection models as it can be used to predict the 

well productivity index (Law, 1943), this represents the 

capacity of a rock to transmit the fluids (Berg, 1970). 

To estimate the optimal locations the algorithm took 

2,70 seconds being the scenario that took the longest time 

to be completed, as a result we obtain the location of two 

injector wells represented in figure 6 using the CMG 

simulator, the injection rate was obtained as well, in this 

case 238 and 317 BBL/day. 
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Figure 5. Feature importance score, Scenario 2 

 

 
Figure 6. Well locations Scenario 2 

Analyzing the data results it is possible to see that the 

testing data tendency (R2) compared with the training 

data tendency (R2) have the smallest difference among 

all the scenarios. Comparing the initial simulation with 

the model where the respective drilled wells are already 

located in figure 6, it is possible to see the best kind of 

prediction of production from the reservoir as it is shown 

in the figure 7, the blue line represents the original 

production without the new wells and, the red line is the 

new production with the injection well. 

 
Figure 7. Oil production (12 wells Vs Original model) 

 
Scenario number 3: In this scenario the training 

data were the 15 original wells, and the most important 

feature is the grid center which represents the location in 

space for each well, this value is vital in the injection 

model as it represents the place where the next wells will 

be drilled. 

To estimate the optimal locations the algorithm took 

2,53 seconds as a result we obtain the location of three 

injector wells represented in figure 9 using the CMG 

simulator, the injection rates were obtained, in this case 

950, 634 and 238 BBL/day. 

 

 
Figure 8. Feature importance score, Scenario 3 

 

 
Figure 9. Well locations Scenario 3 

Analyzing the data results it is possible to see that the 

testing data tendency (R2) compared with the training 

data tendency (R2) have an average difference among all 

the scenarios. Comparing the initial simulation with the 

model where the respective drilled wells are already 

located in figure 9. Although, the prediction of this 

scenario is not the most optimal, we can see that in the 

oil production graph has the highest production rates 

compared to the other models evaluated in the software. 

Nevertheless, we see that it declines very quickly, 

decreasing available production for future years, as it is 

shown in the figure 10, the blue line represents the 

original production without the new wells andthe red line 

is the new production with the injection well. 

 
Figure 10. Oil production (15 wells Vs. Oringinal model) 

 

5. Conclusions 

This research considered the most relevant 

petrophysical variables of a reservoir to obtain accurate 

results when using proxy models, these variables are key 

to build an algorithm that analyzes the response of 
reservoirs to water injection. The mobility equation 

studies the behavior of fluid within the rock pores, in this 

case water and hydrocarbons, the connectivity values 
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that represent how easy it is for the fluids to move inside 

the reservoir from one well to another (well to well 
connectivity). In the same way, the heterogeneity of the 

reservoir was confirmed to be certain that the study area 

is adequate, using the Dysktra parsons’ method, 

obtaining a factor of 0,67. 
 Despite considering variables as important as porosity 

and connectivity, for the algorithm it was not possible to 

recognize patterns related to production as it had such 

small variances between its data, obtaining a feature 
importance score given by the program of 4 and 32 

respectively only for Scenario 3. 

 An alternative to conventionally methodology is 

proposed for the prediction of injection well locations in 
heterogeneous reservoirs. This method demonstrated that 

it is possible to save time and money in decision-making 

procedures that involves a high uncertainty. Using the 

Extreme Gradient Boosting algorithm, the best locations 
for injection wells in a heterogeneous reservoir were 

predicted, using known values that influence 

hydrocarbon production. During the training process, the 

algorithm calculates the deviation percentages and 
returns an approximate error result, allowing to increase 

the reliability of the model. 

It is concluded that the most optimal scenario is 

number 2, considering that the average production of 
7,900 BBL/day is relatively constant over time. The 

location of the wells in scenario 2 turns out to be optimal 

as they are close to the fault where this natural channel is 

used for fluid migration. By having a single location of 
an injector well in scenario 1, the changes in the average 

daily production of 4900 BBL / day are not significant 

compared to the other scenarios and even with the 

original model, showing that a single injector well is not 
in the ability to push the fluids in the area. For scenario 

3 despite having the maximum production in a day of 

21000 BBL/day, it’s average production is low compared 

to scenario 2, showing a quick decline. 
For scenario 1, the most important variable was the 

initial water saturation with an F score of 50 because this 

defines the initial amount of fluid that will be pushed. For 

scenario 2, the most important variable was harmonic 
permeability F score of 108, considering that this 

represents the ability of fluids to move within the pores 

of the rock. For scenario 3, the most important variable 

was the location of the wells F score of 128, 
demonstrating the importance of their distribution in the 

reservoir to ensure a good recovery factor. 
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