GENERACIÓN DE UN MODELO PETROFÍSICO E IMPLEMENTACIÓN DE REDES NEURONALES PARA LA ESTIMACIÓN DE LA PERMEABILIDAD EN LOS CAMPOS C1 Y C2, UBICADOS EN LA CUENCA DE LOS LLANOS ORIENTALES

JULIO CÉSAR ÁVILA RINCÓN

PROYECTO INTEGRAL DE GRADO PARA OPTAR AL TÍTULO DE MAGISTER EN INGENIERÍA DE YACIMIENTOS

DIRECTOR

ADRIANGELA CHIQUINQUIRÁ ROMERO SÁNCHEZ INGENIERA DE PETRÓLEO, MSC. EN INGENIERÍA DE GAS, MSC. EN GESTIÓN AMBIENTAL PARA LA COMPETITIVIDAD

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍAS PROGRAMA DE MAESTRÍA EN INGENIERÍA DE YACIMIENTOS BOGOTÁ, D.C.

2024

NOTA DE ACEPTACIÓN

Nombre del director Firma del Director Nombre Firma del presidente Jurado

> Nombre Firma del Jurado

> Nombre Firma del Jurado

Bogotá, D.C. septiembre de 2024

DIRECTIVAS DE LA UNIVERSIDAD

Presidente de la Universidad y Rector del Claustro Dr. Mario Posada García Peña

Consejero Institucional Dr. Luis Jaime Posada Garcia-Peña

Vicerrectora Académica Dra. María Fernanda Vega De Mendoza

Vicerrectora de Investigaciones y Extensión Dra. Susan Margarita Benavides Trujillo

Vicerrector Administrativo y Financiero Dr. Ramiro Augusto Forero Corzo

Secretario General Dr. José Luis Macias Rodríguez

Decana de la Facultad de Ingenierías Dra. Naliny Patricia Guerra Prieto

Directora de programa Maestría en Ingeniería de Yacimientos Dra. Naliny Patricia Guerra Prieto

Las directivas de la Universidad de América, los jurados calificadores y el cuerpo docente no son responsables por los criterios e ideas expuestas en el presente documento. Estos corresponden únicamente a los autores.

DEDICATORIA

A mi padre, Julio Ávila Suárez.

AGRADECIMIENTOS

A mi familia, por su apoyo durante este proceso y, en especial, a mi esposa Valentina. A mis compañeros de maestría y de trabajo, también por su apoyo y compañía. A la profesora Adriangela Chiquinquirá Romero, quien fue un soporte fundamental y una guía constante durante la maestría y el desarrollo de este trabajo.

TABLA DE CONTENIDO

RESUMEN	13
INTRODUCCIÓN	14
1 OBJETIVOS	16
1.1 Objetivo general	16
1.2 Objetivos específicos	16
2 GENERALIDADES DEL ÁREA DE ESTUDIO	17
2.1 Cuenca de los llanos Orientales	17
2.1.1 Marco tectónico	18
2.2 Sistema petrolífero de los campos de estudio	20
2.3 Ambiente de depósito de la Formación Barco	22
3 MARCO TEÓRICO	25
3.1 El modelamiento petrofísico	25
3.2 El problema de estimar la permeabilidad	26
3.3 Inteligencia artificial en el modelamiento petrofísico	26
3.4 Las redes neuronales	27
4 METODOLOGÍA	28
4.1 Fase I: Recopilación de registros de pozo y mediciones de núcleos	29
4.1.1 Compilación de la información disponible	30
4.1.2 Registros eléctricos adquiridos en los campos de estudio	30
4.2 Fase II. Generación de un modelo petrofísico básico	31
4.3 La fase III. Generación de una red neuronal	36
4.4 Fase IV. Comparación de resultados de la red neuronal y de las fórmulas empíricas	37
5 RESULTADOS Y ANÁLISIS	38
5.1.2 Análisis de datos y normalización de curvas	<u>38</u>

5.2 Evaluación petrofísica básica		42
5.2.1	Cálculo de volumen de arcilla y contenido de shale	42
5.2.2	Porosidad	44
5.2.3	Saturación de agua irreducible	47
5.2.4	Saturación de agua total	51
5.2.5	Estimación de la permeabilidad	56
5.3 Generación de una red neuronal		58
5.3.1	Análisis y depuración de la base de datos	59
5.3.2	Generación del modelo de aprendizaje automático	64
5.3.3	Validación de resultados de la red neuronal	70
5.4 Comparación de resultados de la red neuronal con las fórmulas empíricas		73
6 CONCL	USIONES	80
7 RECOMENDACIONES		83
8 REFERENCIAS		85
ANEXOS		87

LISTA DE FIGURAS

Figura 1. Localización de la cuenca de los Llanos y de la zona de estudio	17
Figura 2. Diagrama estratigráfico regional de Wheeler	19
Figura 3. <i>a</i> . Columna general de los campos C1 y C2; <i>b</i> . Registros en la zona de interés	
del pozo C1-8	21
Figura 4. Regiones interna y externa de un estuario macromareal y sus subambientes	23
Figura 5. Ambientes sedimentarios y distribución de los cuerpos de arena de la zona de	
interés	24
Figura 6. Diagrama de flujo del proceso de investigación	29
Figura 7. Ubicación de los pozos perforados y los núcleos adquiridos en los campos C1	
y C2	30
Figura 8. Normalización de registros de rayos gamma	39
Figura 9. Normalización de registros de porosidad neutrón	40
Figura 10. Normalización de registros de densidad	41
Figura 11. Gráficos cruzados y coeficientes de correlación de VCL y VSH con los datos	
de núcleo	43
Figura 12. Resumen de los volúmenes de shale promedio por pozo	44
Figura 13. Gráficos cruzados y coeficientes de correlación de datos calculados de	
porosidad con datos de núcleo	45
Figura 14. Resumen de las porosidades promedio para las arenas netas de los pozos de	
estudio	46
Figura 15. Resumen de los espesores totales y de arenas netas por pozo.	47
Figura 16. Resumen de Swirr y constante C de las pruebas de presión capilar	49
Figura 17. Gráficos cruzados y coeficientes de correlación de datos calculados de	
saturación de agua irreducible con datos de núcleo de pozos	50
Figura 18. Gráficos de pickett plott para la calibración de la Rw en los pozos en los pozo	S
C1-13 y C2 B-7 que presentan OWC.	52
Figura 19. Saturación de agua total y saturación de agua irreducible por pozo	54
Figura 20. Resumen de net pay por pozo	55

Figura 21. Gráficos cruzados de las permeabilidades calculadas y coeficientes de	
correlación	56
Figura 22. Regresión lineal y gráfico cruzado de la relación porosidad permeabilida	d del
núcleo	57
Figura 23. Gráfico de cajas y bigotes	59
Figura 24. Gráfico de calor de todas las variables de la base de datos seleccionada	61
Figura 25. Gráfico de calor de las variables de la base de datos filtrada	63
Figura 26. Gráfico de calor de las variables de la base de datos filtrada	64
Figura 27. Arquitectura esquemática de la red neuronal	66
Figura 28. Código de importación de librerias Pandas y Matplotlib e importación d	e la
base de datos	67
Figura 29. Código de identificación de los sets de datos organizados por pozo	67
Figura 30. Código de carga de las librerias de aprendizaje automático	69
Figura 31. Código de selección de variables de entrada y variable objetiva	69
Figura 32. Código de construcción del modelo con MLPRegresor	70
Figura 33. Códigos de medición de metricas de validacion y R2	71
Figura 34. Códigos de selección de set de datos para ensayo de la red neuronal	71
Figura 35. Gráfico cruzado de los datos reales con los datos estimados por la NN es	n el
pozo de prueba.	72
Figura 36. Permeabilidad estimada con la NN comparada con la permeabilidad real	con
datos de núcleo	73
Figura 37. Comparación de las permeabilidades calculadas para el set de datos de p	rueba74
Figura 38. Comparativo de los promedios y desviaciones estándar de las	
permeabilidades	76
Figura 39. Gráfico cruzado y coeficiente de correlación con el método de redes	
neuronales	77
Figura 40. Gráficos cruzados y coeficientes de correlación con los métodos de Tixe	er,
Timur, Coates, y las regresiones a partir de datos de núcleo.	78

LISTA DE TABLAS

Tabla 1. Inventario de la información de núcleo disponible	42
Tabla 2. Saturaciones de agua irreducible (Swirr) y constante C de Buckles	48
Tabla 3. Temperaturas de las bombas electro sumergibles	51
Tabla 4. Parámetros petrofísicos para el cálculo de saturación	53
Tabla 5. Propiedades eléctricas medidas en núcleo	54
Tabla 6. Resumen estadístico de la base de datos completa	59
Tabla 7. Resumen estadístico de la base de datos sin los datos anómalos	60
Tabla 8. Resumen estadístico de los datos seleccionados para el entrenamiento de la red	
neuronal	68
Tabla 9. Resumen estadístico de los datos seleccionados para la prueba de la red	
neuronal	68
Tabla 10. Comparación de los valores de R2 de los diferentes métodos para estimar la	
permeabilidad.	79

LISTA DE ANEXOS

Anexo 1. Sumario petrofísico	88
Anexo 2. Curvas calculadas y puntos de control de núcleo	89
Anexo 3. Listados de pozos con registros y análisis de núcleo	91
Anexo 4. Análisis de XRD	92
Anexo 5. Análisis básicos de núcleo	101
Anexo 6. Propiedades eléctricas	106
Anexo 7. Pruebas de presión capilar	114
Anexo 8. Análisis fisicoquímico de agua del pozo C2 A-1	122

RESUMEN

Se realizó una caracterización petrofísica para la Formación Barco en 44 pozos, con base en registros adquiridos con tecnología LWD (Logging While Drilling) y la información de 4 núcleos. El volumen de shale oscila entre 1 % y 18 %, lo cual indica un yacimiento relativamente heterogéneo en cuanto al contenido de shale. En las zonas consideradas como arena neta, la porosidad calculada oscila entre 18 % y 22 %, lo que indica que el yacimiento tiene una capacidad del almacenamiento buena y relativamente homogénea. La variación en la calidad del reservorio está controlada principalmente por cambios en el tamaño de grano, más que por la presencia o ausencia de minerales de arcilla.

Se encontró que la saturación de agua total es bastante mayor a la saturación de agua irreducible, con promedios de 20 % y 13 %, respectivamente; esto indica que la producción acumulada del yacimiento ha ocasionado que, en el momento de la perforación, la saturación no sea la original, o que la salinidad que se usó para el cálculo de la saturación total de agua pueda no ser representativa para todos los pozos. Por lo anterior, estimar la saturación de agua irreducible es clave por dos razones: primero, para la estimación del petróleo original en sito OOIP, y, segundo, porque es un input para calcular la permeabilidad de la formación de interés.

La permeabilidad calculada está en el orden de 1900 mD. Las estimaciones de esta propiedad realizadas por medio de ecuaciones semi empíricas y regresiones a partir de los datos de núcleo tuvieron valores de ajuste de R^2 que oscilan entre 0,51 y 0,56. Por otra parte, el R^2 de la permeabilidad obtenida a partir de las redes neuronales artificiales fue de 0,61, ligeramente mayor a las demás para este caso en particular.

Palabras claves: LWD (logging while drilling), volumen de shale, saturación de agua irreducible, permeabilidad, redes neuronales.

INTRODUCCIÓN

La precisión en la caracterización petrofísica de los yacimientos es la base sobre la que se construyen modelos estáticos acertados que posteriormente se traducen en modelos dinámicos predictivos con los que se toman decisiones estratégicas y se hacen grandes inversiones en la industria del petróleo. Propiedades básicas del yacimiento como la porosidad, la saturación de hidrocarburos y la permeabilidad son los principales entregables de un modelo petrofísico básico. Estas propiedades se calculan por medio de una serie de ecuaciones matemáticas lineares y en secuencia, en las que se usan como variables de entrada los registros de pozo y como punto de calibración de los resultados las mediciones hechas en los núcleos.

La permeabilidad es una de las propiedades más importantes y sensibles e influye considerablemente en las predicciones de los modelos dinámicos y en la toma de decisiones sobre el desarrollo del campo. Esta propiedad es especialmente difícil de calcular por medio de las fórmulas matemáticas establecidas y "semi empíricas" como: Pape (1999), Timur (1968) o Coates (1974), debido a que estas formulaciones funcionan bien en un medio similar al utilizado para su elaboración. En los años recientes se han publicado varios trabajos en los que se usan la inteligencia artificial y específicamente las redes neuronales para estimar la permeabilidad a partir de datos de núcleo y de registros de pozo de manera exitosa [1][2] [3][4].

El desarrollo de este trabajo constituye la caracterización básica y convencional de los yacimientos de los campos de estudio y es una primera aproximación a la implementación del aprendizaje automático mediante el uso de lenguaje de programación y código abierto, utilizado con el fin de mejorar la precisión de la caracterización petrofísica de este yacimiento y dar el primer paso hacia el análisis masivo de datos y el uso de la cada vez más extendida inteligencia artificial. Las aplicaciones del aprendizaje automático en el flujo de trabajo petrofísico incluyen la predicción de propiedades continuas como la permeabilidad (como en este trabajo), o discretas como las facies; sin embargo, constituye también una herramienta muy útil en la fase del análisis y control de calidad de los datos previos a la interpretación.

Las aplicaciones, en este sentido, incluyen ajustes en profundidad, correlación de pozos, normalización de datos, detección de datos anómalos, generación de datos faltantes, entre otros. El concepto de inteligencia artificial y específicamente de aprendizaje automático ha sido propuesto y desarrollado desde hace varias décadas; sin embargo, su uso en la disciplina petrofísica es relativamente reciente, debido a los cada vez más accesibles lenguajes de programación de código abierto y a la cada vez mayor capacidad de cómputo de las máquinas. Por esta razón, esta herramienta tiene el potencial de optimizar el flujo de trabajo y la caracterización petrofísica de los yacimientos del país.

1 OBJETIVOS

1.1 Objetivo general

Generar un modelo petrofísico implementando las redes neuronales para la estimación de la permeabilidad en los campos C1 y C2 en la cuenca de los Llanos Orientales de Colombia.

1.2 Objetivos específicos

- Validar la información de registros de pozo disponibles en los campos y las mediciones de propiedades petrofísicas en los núcleos disponibles.
- Generar un modelo petrofísico básico para la obtención de las propiedades elementales del yacimiento: porosidad, saturación de fluidos y permeabilidad, por medio de fórmulas petrofísicas convencionales.
- Generar una red neuronal en lenguaje Python dentro de la plataforma Anaconda, usando como capa de entrada las variables estimadas en el modelo petrofísico, así como los registros de pozo sin procesamiento, y como capa de salida la permeabilidad.
- Comparar la permeabilidad estimada por medio de la red neuronal y la permeabilidad obtenida con las fórmulas convencionales versus las permeabilidades medidas en el núcleo para la validación del mejor coeficiente de correlación.

2 GENERALIDADES DEL ÁREA DE ESTUDIO

El área de estudio se encuentra ubicada en la cuenca sedimentaria de los Llanos Orientales de Colombia, en el departamento del Casanare. Se seleccionaron dos campos petrolíferos de la zona central de la cuenca llamados en este trabajo C1 y C2, cuyas mayores reservas y producción principal provienen de la Fm Barco.

2.1 Cuenca de los llanos Orientales

La cuenca de los Llanos es la mayor provincia productora de petróleo en Colombia. Se han documentado oficialmente más de 1500 MMBO de petróleo recuperable[5]. En la cuenca, los campos más importantes son Rubiales, Catillas y Caño Limón.

Figura 1. Localización de la cuenca de los Llanos y de la zona de estudio.

Nota. Localización de la cuenca de los Llanos y el bloque zona de estudio. Tomado de: D. Barrero, A. Pardo, C. A. Vargas, and J. F. Martínez, Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. 2007. [Online]. Available: www.anh.gov.co Según la Agencia Nacional de Hidrocarburos (ANH) [5], esta cuenca está limitada al oeste por el piedemonte de la cordillera oriental colombiana (la cadena montañosa más oriental de las tres que forman los Andes de Colombia); hacia el este por el escudo cratónico precámbrico de Guyana, y hacia el sur por la cuenca del Amazonas, de la cual está separada por las montañas de la serranía de la Macarena y el arco de basamento de Vaupés. El límite norte es la cuenca de Apure y la cordillera de Mérida, en Venezuela (figura 1).

2.1.1 Marco tectónico

De acuerdo con el libro *Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology. A New Proposal* [5], la evolución de la cuenca se inició en el Paleozoico con una fase de *rifting.* Sobre estas rocas Paleozoicas, que constituyen el basamento cristalino y económico de la cuenca, se depositaron posteriormente sedimentos siliciclásticos. Desde el Triásico hasta el Cretácico superior, la cuenca se constituyó en el flanco oriental de un gran sistema de *rift.* Desde el Maastrichtiano hasta el Paleoceno, en una cuenca de *foreland.* Desde el Mioceno hasta épocas recientes, se han depositado en esta gruesos depósitos de molasa. Las rocas generadoras del Cretácico varían de inmaduras a maduras marginales. Los principales yacimientos son unidades siliciclásticas de edad Cretácico Superior y Paleógeno.

La unidad geológica objeto de este estudio es de edad Paleoceno y se ha asociado con la Formación Barco. A continuación, se describe brevemente la unidad estratigráfica objeto de este estudio como figura en el trabajo regional de Sarmiento 2011, en el libro *Petroleum Geology of Colombia Llanos Basin* [6] (figura 2).

Figura 2.

Diagrama estratigráfico regional de Wheeler

Nota. Modificado de [6] Pagina 39. Diagrama estratigráfico regional de Wheeler. El eje horizontal representa la distancia horizontal y el eje vertical representa el tiempo geológico en millones de años. Modificado según Etayo (1985a, 1994), Geotec (1992), Cooper et al. (1995), Ecopetrol y Beicip (1995).

2.1.1.a. Fm. Barco. Esta unidad se compone de areniscas, limolitas y arcillitas estuarinas. De acuerdo con la clasificación de Folk (1980), estas areniscas son predominantemente cuarzo arenitas, variando a sub litoarenitas hacia el tope de la unidad. Los ambientes deposicionales de la Fm. Barco son: barras de arenas y planicies arenosas, mixtas y fangosas. Las areniscas de planicie arenosa son limpias, predominantemente de grano medio, bien seleccionadas, y preservan altas porosidades, incluso a grandes profundidades de soterramiento. Los valores promedio de varios campos en la parte occidental de la cuenca varían entre 3 % y 13%, y disminuyen de sur a norte. En el sector oriental, los valores de porosidad se incrementan hacia el borde de la cuenca, donde la porosidad promedio alcanza casi el 25 %.

2.2 Sistema petrolífero de los campos de estudio

El sistema petrolífero de los campos C1 y C2 está conformado por la Formación Gachetá como roca fuente y reservorio; las formaciones Barco y Mirador como los principales reservorios, y como los principales sellos, el miembro C8 de la Formación Carbonera, los niveles arcillosos de la Formación Mirador y las facies finas de las formaciones Barco y Gachetá. La unidad objeto de este estudio es la Formación Barco (figura 3).

Figura 3. a. Columna general de los campos C1 y C2; b. Registros en la zona de interés del pozo C1-8.

Nota. a) Columna general de los campos C1 y C2 con los elementos del sistema petrolífero. b) Respuesta eléctrica de la zona de interés del pozo C1-8. Adicionalmente, se describen los principales elementos del sistema petrolífero de los campos en mención.

• Roca reservorio

Los principales reservorios de los campos C1 y C2 son (de tope a base) las formaciones Mirador, Barco y Gachetá, cuyas areniscas tienen en general buenas propiedades petrofísicas, excelentes espesores y una muy buena continuidad lateral, lo que las hace reservorios ideales. A continuación, se hace una descripción general para la unidad objeto de este estudio, con base en los informes internos de la compañía operadora.

• Areniscas de la Fm. Barco

Es el reservorio más importante de los campos objeto de este estudio, debido a la extensión horizontal de arenisca saturada con hidrocarburo. Las areniscas principales de Fm. Barco se desarrollan en la parte basal de la unidad y alcanzan espesores gross de 40 a 120 ft, de los cuales el 65 %, en promedio, son reservorio útil. Las areniscas principales están conformadas por una superposición de capas de 20 a 40 ft de espesor, y sus facies varían lateralmente, pasando de buenos reservorios a facies más finas y/o cementadas con bajas propiedades petrofísicas, siendo estas últimas más la excepción que la regla. Las areniscas están conformadas que varía de 1 % a 15 %, y una porosidad promedio del 20 %, de tipo principalmente secundaria.

2.3 Ambiente de depósito de la Formación Barco

A continuación, se describe el ambiente sedimentario y el contexto estratigráfico de la Formación Barco, que es el objeto de este estudio, con base en los informes y descripciones realizadas en los núcleos adquiridos de los campos C1 y C2, que corresponden a informes internos de la compañía operadora.

La Fm Barco contiene asociaciones de facies interpretadas como sistemas estuarinos y planicies costeras dominadas por mareas. Los estuarios fueron dominados por mareas con influencia menor de la acción del oleaje en regímenes mesomareal a macromareal inferior, debido a la ausencia de elementos morfológicos típicos de estuarios dominados por olas micro a mesomareal, así como al desarrollo de barras estuarinas que sugieren corrientes mareales de alta magnitud, las cuales permitieron un intercambio activo entre los estuarios y el mar abierto. Los elementos morfológicos presentes en estuarios dominados por olas y ausentes en los sistemas estuarinos corresponden a *bay-head* deltas, en la región interna de

los estuarios; bahías estuarinas o *lagoons*, en la región intermedia de los sistemas, y depósitos de alta energía, en la región externa de estos (*plugs* compuestos de: islas barreras, *washovers* y *tidal deltas*). Por lo anterior, los ambientes estuarinos descritos en los campos C1 y C2 siguen el modelo propuesto Robert W. Dalrymple et al., en *Principles of Tidal Sedimentology* [7] (figura 4).

Figura 4.

Regiones interna y externa de un estuario macromareal y sus subambientes

Nota. Modelo basado en los sistemas estuarinos de Robert W. Dalrymple, Duncan A. Mackay, Aitor A. Ichaso, and Kyungsik S. Choi, "Processes, Morphodynamics, and Facies of Tide-Dominated Estuaries," in *Principles of Tidal Sedimentology*, Jr. Richard A. Davis, Ed., Springer Dordrecht Heidelberg London New York, 2012, ch. 5, pp. 93–107 [7].

Así mismo, las planicies costeras dominadas por mareas, abiertas a la bahía marina y ubicadas en regiones intermedias entre estuarios, estarían afectadas también por este rango mareal (mesomareal a macromareal inferior). Las llanuras intermareales en estas zonas abiertas al mar se diferencian de sus equivalentes estuarinos (llanuras intermareales ubicadas en la región interna o externa de los sistemas estuarinos) por la presencia de arenitas con granulometrías más gruesas (arenitas finas por lo general) y estructuras físicas y biogénicas

que indican mayor velocidad de las corrientes (criptobioturbación y estratificación cruzada). Por esto, los ambientes de planicies costeras (dominadas por mareas -abiertas al mar-), descritos para los campos C1 y C2 siguen el modelo propuesto por P. Desjardins et al. [8] (figura 5).

Figura 5.

Nota. En ambientes marino-someros influenciados por mareas. El recuadro rojo indica los ambientes de planicie costera. Tomado y modificado de P. Desjardins, L. Buatois, and M. Mangano, "Tidal Flats and Subtidal Sand Bodies," in *Developments in Sedimentology*, vol. 64, 2012, pp. 529–561. doi: 10.1016/B978-0-444-53813-0.00018-6 [8].

Como conclusión, el modelo de depositación de los campos C1 y C2 está relacionado con un sistema sedimentario transicional con influencia fluvial y modulado por las mareas, el cual desarrolló cuerpos sedimentarios de gran extensión lateral y longitudinal, con muy buenas propiedades petrofísicas, que se encuentran limitados por sectores de bajas propiedades petrofísicas en términos de porosidad y permeabilidades propias del mismo ambiente de sedimentación.

3 MARCO TEÓRICO

3.1 El modelamiento petrofísico

Un modelo petrofísico es la caracterización cuantitativa de propiedades físicas de un yacimiento tales como porosidad, saturación de fluidos y permeabilidad, las cuales se calculan mediante una serie de fórmulas matemáticas disponibles en la bibliografía petrofísica que ha sido desarrollada a través de años de investigación y que tiene como variables de entrada varias propiedades físicas medidas con los registros de pozo: respuesta de rayos gamma, resistividad, densidad y porosidad neutrón, por mencionar las más elementales. Los parámetros que se calculan, como porosidad, saturación de fluidos y permeabilidad, pueden ser corroborados y calibrados con las mediciones de laboratorio (de las mismas propiedades) que se hacen en los núcleos de pozo.

La precisión y calidad en los modelos petrofísicos son la base de la calidad de los modelos estáticos, los cuales posteriormente se traducen en la predictibilidad de los modelos dinámicos con los que se toman decisiones estratégicas y se hacen grandes inversiones en la industria del petróleo. Las propiedades básicas del yacimiento como la porosidad, la saturación de hidrocarburos y la permeabilidad son los principales entregables de un modelo petrofísico. Los modelos petrofísicos básicos se hacen por medio de una serie de ecuaciones matemáticas lineares y en secuencia, en las que se usan como variables de entrada los registros eléctricos y como punto de calibración las mediciones hechas en los núcleos.

Sin embargo, para cualquier porosidad dentro de un tipo de roca dado, la permeabilidad puede variar en varios órdenes de magnitud, lo que indica la existencia de varias unidades de flujo [9].

Por esta razón, se hace necesario discriminar correctamente las diferentes unidades de flujo, con el fin de aplicar una ecuación de permeabilidad apropiada en cada caso. La discriminación clásica de tipos de rocas se ha basado en observaciones geológicas subjetivas y en relaciones empíricas entre la permeabilidad y la porosidad [9]

3.2 El problema de estimar la permeabilidad

Entre las variables que salen de un modelo petrofísico, la permeabilidad (k) es una de las más importantes, pues influye considerablemente en la toma de decisiones sobre el desarrollo del campo. Esta propiedad es especialmente difícil de calcular por medio de las fórmulas matemáticas establecidas y "semi empíricas" como Pape (1999), Timur (1968) o Coates (1974), debido a que estas formulaciones solo funcionan bien en un medio similar al utilizado para su elaboración [1]. La permeabilidad es una de las características más importantes de los yacimientos de hidrocarburos. Un perfil preciso de permeabilidad permite una gestión eficaz de los yacimientos de petróleo y gas. Dicho esto, la determinación de la permeabilidad sigue siendo uno de los problemas más desafiantes de la petrofísica [3]. El problema con la predicción de la permeabilidad es que se encuentra más relacionada con la apertura de las gargantas de los poros que con el tamaño de los poros en sí, lo cual por lo general está por debajo de la resolución vertical de los registros de pozo, que oscila entre 1 o 2 ft, mientras los tapones de núcleo en los que se mide la permeabilidad están en el orden de pulgadas [4].

3.3 Inteligencia artificial en el modelamiento petrofísico

Las redes neuronales y, en general, la inteligencia artificial, está siendo utilizada ampliamente en diferentes campos de las ciencias puras y aplicadas para analizar datos de manera masiva, así como para generar algoritmos que encuentren relaciones entre variables de entrada y salida. Actualmente, se hace uso de la cada vez más grande capacidad de cómputo disponible en el mercado, y el área de la petrofísica no es la excepción.

Una de las ventajas más importantes de la IA aplicada a los modelos petrofísicos es que no requiere un conocimiento previo de las ecuaciones de respuesta petrofísica y se "auto calibra"[4]. No existen parámetros para escoger o gráficos cruzados para hacer. Hay muy poca intervención del usuario y la IA evita el problema de 'basura entra, basura sale' (GIGO), ignorando el ruido y los valores atípicos [4]. Por esta razón, puede ser de mucha ayuda encontrar los algoritmos que hay entre los datos de registros eléctricos disponibles y las propiedades medidas en los núcleos.

La inteligencia artificial (IA) es un método de análisis de datos, que aprende de estos, identifica patrones y crea predicciones con la mínima intervención humana [4]. Dado que no es económicamente viable adquirir todos los registros deseados o núcleos en todos los pozos de un campo, la IA se utiliza para descubrir las relaciones entre registros y núcleos disponibles en el campo para reproducirlos en pozos donde no se adquirió la misma información o donde la información está incompleta.

3.4 Las redes neuronales

Las redes neuronales (en adelante NN por sus siglas en inglés) son sistemas de procesamiento de cómputo paralelo que pueden estimar cualquier función continua con precisión arbitraria [1]. La disposición y operación de los componentes de una NN intenta imitar los procesos de aprendizaje biológico a través de la asociación y transformación de datos de entrada y salida [2]. Cuando una NN es entrenada por un algoritmo supervisado, el aprendizaje ocurre cambiando los pesos que conectan las neuronas, según los datos de entrenamiento que contienen los ejemplos de pares de entrada-salida [1]. Por lo tanto, el proceso de entrenamiento se puede definir como la forma en que una red neuronal modifica sus pesos en respuesta a la información de entrada. Este proceso se refleja en la modificación, destrucción o creación de conexiones entre neuronas [1].

En los años recientes, se han publicado varios trabajos en los que se usan las redes neuronales para estimar la permeabilidad a partir de datos de núcleo y registros de pozo de manera exitosa; se ha comprobado que su coeficiente de correlación (R²), con la k medida en los núcleos, es más alto si se compara con la k obtenida con las fórmulas semi empíricas convencionales [1].

4 METODOLOGÍA

A continuación, se describe la metodología propuesta para la generación del modelo petrofísico básico y la implementación de redes neuronales para la estimación de la permeabilidad. En la fase I, se compilarán los registros de pozo disponibles y las mediciones de propiedades petrofísicas en núcleos. En la fase II, se elaborará un modelo petrofísico para obtener las propiedades elementales del yacimiento. En la fase III, se generará una red neuronal en lenguaje Python dentro de la plataforma Github para estimar la permeabilidad. En la fase IV, se realizará la comparación de la permeabilidad estimada por medio de la red neuronal y la permeabilidad obtenida con fórmulas empíricas convencionales (figura 6).

Figura 6.

Diagrama de flujo del proceso de investigación

Nota. Se resumen la secuencia de los pasos y las herramientas usadas. En las flechas se describe la relación entre las diferentes fases.

4.1 Fase I: Recopilación de registros de pozo y mediciones de núcleos

Se realizará la revisión y selección de los registros de pozo, así como de la información de núcleos disponible de los pozos perforados hasta junio del 2018, en los campos C1 y C2 para la formación de interés. Se hará un análisis de datos de la información de registros eléctricos recopilada, así como el control de calidad de las curvas para la eliminación de datos anómalos y la posterior normalización de las curvas de rayos gamma, densidad y porosidad neutrón.

4.1.1 Compilación de la información disponible

En los campos C1 y C2, hasta junio del 2018, se perforaron 48 pozos y se adquirieron 4 núcleos en la formación de interés (figura 7).

Figura 7.

Ubicación de los pozos perforados y los núcleos adquiridos en los campos C1 y C2.

Nota. En azul, los pozos sin núcleo; en rojo, los pozos con núcleo.

4.1.2 Registros eléctricos adquiridos en los campos de estudio

Todos los pozos usados en el presente estudio fueron registrados usando la tecnología Logging While Drilling (LWD). Esta tecnología consiste en una gamma de herramientas de registros fabricadas dentro de tuberías que se pueden incorporar en el BHA de perforación, permitiendo registrar al mismo tiempo que es perforado el pozo. Esta tecnología permite la optimización de tiempos y costos, y reduce el riesgo de adquisición de registros en pozos donde usar herramientas de cable es operativamente difícil por la trayectoria, profundidad o condición del hueco. De los 48 pozos perforados hasta 2018, se seleccionaron 44 (Anexo A). Se excluyeron los pozos de baja densidad de datos desde la adquisición, con gaps en las curvas o con muy baja calidad de la información por efectos de diámetro del hueco.

El set de registros recopilado para todos los pozos usados en el presente estudio consta de: rayos gamma (GR), densidad (DEN), factor fotoeléctrico (PEF), porosidad neutrón (NEU) y resistividad (RES). En cuanto a la resistividad, se incluyeron únicamente los pozos en los que se adquirió la resistividad de tipo laterolog, debido a que las altas resistividades del yacimiento objeto de estudio hacen que este tipo de resistividad tenga mayor precisión cuantitativa en comparación con la resistividad de tipo inducción, lo que a su vez impactará en un cálculo de saturación de agua más preciso. Se utilizó para el cálculo de la saturación la resistividad más profunda disponible. Algunos registros especiales como la resonancia magnética nuclear (MNR), los registros de espectroscopia (carbono oxígeno, mineralógicos, neutrones pulsantes), el registro dieléctrico y otros especiales, no se incluyeron en este trabajo, en primer lugar, porque solo fueron adquiridos en algunos pozos puntuales de los incluidos en este estudio y, en segundo lugar, porque el propósito de este trabajo es determinar un buen método para calcular la permeabilidad usando los registros más básicos y abundantes en la industria. En cuanto al registro de potencial espontáneo (SP), no se adquirió en ninguno de los pozos del presente estudio, dado que este registro no existe como herramienta LWD, pues la naturaleza conductiva de las tuberías de perforación no permite medir la diferencia de potenciales eléctricos.

4.2 Fase II. Generación de un modelo petrofísico básico

En esta fase, se realizarán los cálculos petrofísicos mediante el método determinístico, el cual inicia al realizar el cálculo del volumen de arcilla y contenido de shale, seguido por la porosidad total, la porosidad efectiva, la saturación de agua total y la saturación de agua irreducible. Luego, se compararán las curvas calculadas con los datos de núcleo y se harán

las correcciones necesarias. Por último, se estimarán varias curvas de permeabilidad mediante los métodos empíricos de Pope, Tixer y Timur. Este cálculo se realizará también mediante la regresión lineal con los datos de porosidad y permeabilidad de los núcleos. Si bien los yacimientos de esta zona de los Llanos son relativamente limpios, la Formación Barco es heterogénea en sus propiedades en áreas relativamente pequeñas; por lo tanto, es necesario estimar el volumen de arcilla, el volumen de shale y calibrar las propiedades estimadas con los datos medidos en los núcleos.

El volumen de arcilla (denominado en adelante como VCL) se obtendrá a partir de los registros de pozo, específicamente a partir de los datos del registro de GR, mediante la ecuación 1[10]:

$$VCL = \frac{GRlog - GRmin}{GRmax - GRmin}$$
(1)

Donde: GR log es el registro de rayos gamma (grados API), GRmin es el valor más bajo de GRlog en la zona de interés (grados API) y GRmax corresponde al más alto valor de GR en la a la zona más arcillosa de la zona de interés (grados API).

De acuerdo con Khatchikian [10], el cálculo del VCL derivado de la curva de GR, se puede ver afectado por la presencia o ausencia de zonas realmente "limpias" en la zona de interés, el contenido de minerales radioactivos no arcillosos en las areniscas (como feldespato potásico), o la ausencia de arcillas con alto contenido de potasio (como caolinita o montmorillonita), lo que derivaría en un bajo contraste entre las areniscas y las arcillolitas. Debido a que en algunos pozos se observó un bajo contraste en la curva de rayos gamma en comparación con un alto contraste en las curvas de densidad y porosidad neutrón, se realizó el cálculo de contenido de shale (en adelante VSH) usando las curvas de densidad y porosidad neutrón (ecuación 2) [11].

$$VSH = \frac{RhoB - RhoM + PhiN * (RhoM - RhoF)}{RhoShl - RhoM + HIshl * (RhoM - RhoF)}$$
(2)

Donde: RhoB es el registro de densidad (g/cm3); PhiN es el registro de porosidad neutrón (v/v); RhoM es la densidad de la matriz: 2,65 (g/cm3); RhoF, la densidad del fluido, que en este caso es agua (lodo base agua): 1

(g/cm3); RhoShl, la densidad nominal del shale: 2,4 (g/cm3), y HIshl, el índice de hidrogeno del shale: 0,4 (v/v).

Según el *Crain's Petrophisical Handbook* [11] la separación entre las curvas de densidad y porosidad es un método común para el cálculo del volumen de shale y es correcto cuando el contenido de la arena con shale está compuesto solo de cuarzo y minerales de arcilla. Si bien en sentido estricto el VLC y el VSH son conceptualmente diferentes, ambos son útiles para corregir la porosidad efectiva y la saturación de agua. Por esta razón, se calcularán los dos parámetros para ser comparados con los datos de núcleo y seleccionar el que más se ajuste. Para realizar la estimación de la porosidad, se emplearán las siguientes ecuaciones (3,4 y 5), tomadas de [11].

$$\mathbf{PhiD} = \frac{\mathrm{RhoM} - \mathrm{RhoB}}{\mathrm{RhoM} - \mathrm{RhoF}}$$
(3)

$$\mathbf{PhiA} = (\mathrm{PhiD} + \mathrm{PhiN})/2 \tag{4}$$

$$\mathbf{PhiE} = \mathrm{PhiA} * (1 - \mathrm{VSH}) \tag{5}$$

Donde: PhiD es la porosidad derivada del registro de densidad (v/v); PhiA es la porosidad promedio de PhiD, y PhiN (v/v) y PhiE es la porosidad efectiva (v/v); RhoB es el registro de densidad (g/cm3); PhiN es el registro de porosidad neutrón (v/v); RhoM, la densidad de la matriz: 2,65 (g/cm3); RhoF, la densidad del fluido, que en este caso es agua (lodo base agua): 1 (g/cm3).

La saturación de agua irreducible se calculará mediante la siguiente ecuación (ecuación 6), propuesta por Buckles en 1965 [12]. Esta ecuación relaciona la porosidad y la saturación de agua irreducible de la siguiente manera:

$$\boldsymbol{C} = PhiE * Swirr \tag{6}$$

Donde: PhiE es la porosidad efectiva (v/v); C es una constante cuya magnitud está relacionada con el tipo de roca e indirectamente con la permeabilidad, y Swirr es la saturación de agua irreducible. Cuanto menor sea el valor de la constante, mejor será la calidad de la roca [12].

Para realizar la validación de la saturación de agua irreducible, se usarán las saturaciones medidas en las pruebas de presión capilar; además, por medio de la porosidad y la saturación de agua irreducible de los tapones, se calculó la constante C, según la relación de Buckles [12], la cual se usará posteriormente para calcular la saturación de agua irreducible con la porosidad y el VSH calculados.

Para realizar el cálculo de saturación de agua total, se usará la ecuación de Simadoux modificado, usando la variación de Bardon y Pied (1969), ecuación 7 [13], con el propósito de disminuir el efecto del agua asociada al contenido de shale, que en algunos pozos alcanza valores del hasta 18 %. Este porcentaje de shale podría ocasionar que la saturación de agua se sobrestime; por esta razón, se usará esta ecuación en particular.

$$SwMS = \left[\frac{\sqrt{\left(\frac{Vshl}{Rshl}\right)^2 + \left(\frac{4PhiE^m}{a * Rw * (1 - Vshl) * Rt}\right) - \left(\frac{Vshl}{Rshl}\right)}{\left(\frac{2Phie^m}{a * Rw * (1 - Vshl)}\right)}\right]^{(2/n)}$$
(7)

Donde: Vshl es el volumen de shale; Rshl, la resistividad de shale; Phie, la porosidad efectiva; Rw, la resistividad del agua de formación; Rt, la resistividad real de formación; a es el exponente de cementación; m, el factor de cementación, y n, el exponente de saturación.

Para realizar el cálculo de la Rw, se procederá a calcular la temperatura de yacimiento de cada pozo en la zona de interés, usando un gradiente que se estimará a partir de las temperaturas medidas en fondo durante las pruebas de presión (PBU), en las que se registra la temperatura durante varios días, lo que permite el cálculo de un gradiente para la zona. No se usarán las mediciones de temperatura de fondo de los registros eléctricos, dado que los registros se adquirieron durante la perforacion, por lo que el lodo de perforación tiene un efecto refrigerante en el pozo y la temperatura que detectan las herramientas no es exactamente la temperatura del yacimiento. Posteriormente, para hallar la Rw, se usará la salinidad medida en análisis de laboratorio del agua proveniente de un pozo seleccionado en la parte alta de la estructura. Para identificar el Rshl, se revisarán todos los valores de

resistividad donde el valor de Vshl sea cercano o igual a 1 en la zona de interés y se establecerá un valor común para todos los pozos. El exponente de cementación (a), el factor de cementación (m) y el exponente de saturación (n) se obtendrán de los análisis de núcleo disponibles.

Para estimar la permeabilidad, se realizaron 3 aproximaciones: fórmulas empíricas documentadas en la literatura a partir de los registros eléctricos, regresiones matemáticas a través de los datos de porosidad y permeabilidad de los núcleos, y, por último, redes neuronales. Los modelos empíricos para estimar la permeabilidad que se seleccionaron para este trabajo se basan en la relación entre la porosidad y la saturación de agua irreducible. A continuación, se describen las tres ecuaciones (8, 9 y 10) utilizadas para este trabajo en la primera aproximación.

Ecuación de Tixer [14]

$$(K)^{\frac{1}{2}} = 250 * \frac{PhiE^3}{Swirr}$$
(8)

Ecuación de Coates [14]

$$(K)^{\frac{1}{2}} = 100 * \frac{PhiE^{2} * (1 - Swirr)}{Swirr}$$
(9)

Ecuación de Timur [14]

$$K = 0.136 * \frac{PhiE^{4.4}}{Swirr^2}$$
(10)

Donde: K es permeabilidad (mD); PhiE es la porosidad efectiva (v/v), y Swirr (v/v) es la saturación de agua irreducible.

Las regresiones lineales, por su parte, se realizarán mediante gráficos cruzados de la porosidad y la permeabilidad medidas en los núcleos; posteriormente, se aplicarán a la porosidad calculada con los registros eléctricos. La aproximación de las redes neuronales se explicará en la fase III.

4.3 La fase III. Generación de una red neuronal

Para la generación de la red neuronal se procederá a consolidar y depurar la base de datos, que consiste en los datos de permeabilidad de núcleo y los datos de los registros adquiridos y las propiedades calculadas ajustados en profundidad. Posteriormente, se exportará esta base de datos en un archivo, separado por comas CSV. Después, se realizará la carga de la base de datos en la plataforma GitHub: plataforma online de desarrollo de software que se usa para almacenar, supervisar y trabajar con proyectos de software. Dentro de esta plataforma se pueden generar espacios para compilar código en lenguaje Python. Este repositorio permite además gestionar y controlar versiones de código.

Parte de la filosofía y esencia de plataformas como GitHub es el carácter abierto y colaborativo de los códigos, por lo cual hay una extensa base de repositorios abiertos al público que se pueden usar y modificar según las necesidades de cada usuario. En el caso específico de la petrofísica, existen líneas de código almacenadas en forma de notebooks que contienen instrucciones sobre cómo usar los códigos y que incluyen librerías, las cuales son una colección de códigos usados con frecuencia y que los desarrolladores pueden incluir en sus programas de Python para evitar escribir el código desde cero. En esta plataforma se realizará el análisis y la depuración de la base de datos previa a las pruebas de predicción de permeabilidad.

Gracias al carácter abierto y colaborativo de la plataforma, se usará el repositorio de petrofísica Petrophysics-Python-Series de Andy McDonald [15]. Este repositorio contiene *notebooks* con líneas de código en lenguaje Python enfocados al análisis de datos y modelamiento petrofísico que incluye algunos modelos para predicción de propiedades continuas. Para este trabajo, se usará el repositorio ANN for Regression - Prediction of Continuous Well Logs.

Se usará el modelo de aprendizaje automático de tipo supervisado, denominado *Multi-Layer Perceptron* (MLP), que es una clase en la biblioteca *scikit-learn* de Python y se utiliza para implementar una red neuronal de perceptrón multicapa para problemas de regresión. El MLP
es un tipo de red neuronal artificial compuesto por múltiples capas de nodos (también llamados neuronas) organizados en una estructura de red. Cada nodo en una capa se conecta con todos los nodos en la siguiente capa. El MLP consta de una capa de entrada, una o más capas ocultas y una capa de salida. Las capas ocultas permiten que la red aprenda patrones no lineales complejos en los datos. A diferencia de la clasificación, que se enfoca en predecir categorías discretas, la regresión se ocupa de predecir valores continuos. El *MLP Regressor* está diseñado específicamente para problemas en los que se desea predecir un valor continuo.

• Características de MLPRegressor:

- Funciones de activación: Comúnmente se usan funciones como ReLU (Rectified Linear Unit), tanh (hiperbólica tangente) o log-sigmoide.
- Optimización: Utiliza algoritmos de optimización como el gradiente descendente estocástico (SGD) o el algoritmo Adam.
- Parámetros ajustables: Número de capas ocultas, número de neuronas por capa, tasa de aprendizaje, regularización, etc.
- Entrenamiento: Utiliza el algoritmo de retro-propagación para ajustar los pesos de la red y minimizar el error de predicción.

4.4 Fase IV. Comparación de resultados de la red neuronal y de las fórmulas empíricas

Con la información obtenida de las fases anteriores, se procederá a establecer en esta última fase los coeficientes de correlación (R2) entre: primero, la permeabilidad estimada por formulas semi empíricas versus las permeabilidades del núcleo, y, segundo, la permeabilidad estimada por la red neuronal versus las permeabilidades del núcleo, con el fin de analizar los resultados y compararlos con los estimados inicialmente.

5 RESULTADOS Y ANÁLISIS

En esta sección, se procederá a mostrar los resultados obtenidos para cumplir con cada uno de los objetivos planteados.

5.1 Análisis de datos y normalización de curvas

Se realizó un análisis de datos de las curvas recopiladas y una normalización de las curvas de rayos gamma, densidad y porosidad neutrón, para remover los errores asociados a diferencias en la calibración de herramientas o errores asociados a mala calidad de hueco. El proceso de normalización grafica consiste en ajustar las curvas deseadas a una o varias curvas de referencia seleccionadas por su buena calidad y el análisis de los datos. Para este caso, se seleccionaron como curvas de referencia los pozos que no tuvieran valores negativos o fuera de los rangos normales y sin cavernas según el registro de tamaño de hueco.

Para los registros de rayos gamma y de densidad, se seleccionaron valores de P (Min) y P (Max), que corresponden a los percentiles superior e inferior de los datos en la curva de referencia; posteriormente, se procedió a ajustar las curvas y normalizar a estos mismos valores de P(Min) y P(Max), como se puede observar en las figuras 8 y 10. Por otra parte, para la curva de porosidad neutrón, en vista de que sus valores máximo y mínimo pueden estar más afectados que las curvas anteriormente normalizadas por condiciones de hueco y en muchas ocasiones ser valores negativos, se optó por usar el promedio de los datos de las curvas de referencia y posteriormente ajustar el promedio de las curvas a normalizar a este valor, como se puede ver en la figura 9.

La razón de normalizar no es eliminar datos del set básico de registros, sino corregir las anomalías y las diferencias en los valores que están asociados a la manera de adquisición y no a las variaciones en las propiedades del yacimiento.

Figura 8. Normalización de registros de rayos gamma

Nota. Curvas originales y de referencia en azul; datos normalizados en rojo. Unidades en grados API.

En la figura 8, se observan las distribuciones de los datos originales de rayos gamma en color rojo y los datos normalizados en color azul. Se puede observar que la mayoría de los datos están entre 10 y 35 API, lo cual indica que el yacimiento tiene un contenido relativamente bajo de arcillas o minerales radioactivos como feldespatos. Se normalizaron los datos usando el método de los "dos puntos", en los que el valor mínimo fue 16,99 y el máximo 98,58 API.

Figura 9. Normalización de registros de porosidad neutrón

Nota. Curvas originales en color rojo, datos de referencia en color verde y datos normalizados en color rojo. Unidades de porosidad en fracción (v/v).

En la figura 9, muestran las distribuciones de los datos originales de porosidad neutrón en fracción (v/v). Se puede observar que la mayoría de los datos están entre 0,2 y 0,28, y con un promedio de 0,24. Se normalizaron los datos usando este promedio. Las porosidades son en general altas, lo que indica que el yacimiento tiene una excelente capacidad de almacenamiento.

Figura 10. Normalización de registros de densidad

Nota. Curvas originales en color rojo, datos de referencia en color verde y datos normalizados en color rojo. Unidades de gramos sobre centímetro cubico (g/cm3).

En la figura 10, se muestran las distribuciones de los datos originales de densidad en gramos sobre centímetro cúbico (g/cm3). Se puede observar una distribución bimodal y que la mayoría de los datos están entre 2,2 y 2,3, con un incremento en la frecuencia en 2,6. Se normalizó usando el método de los dos puntos, en los que los valores máximo y minino fueron 2,23 y 2,59, respectivamente. Estos valores indican que el yacimiento contiene cuarzo como constituyente principal, dado que esta es la densidad nominal de este mineral.

No se normalizó la curva de resistividad debido a que obedece a la saturación de agua que cambia a lo largo de la vida productiva del yacimiento, por lo cual no es una propiedad estática sino dinámica y su normalización llevaría a un cálculo de saturación errado. La normalización de las curvas se limitó a la formación de interés y de este análisis se obtuvieron los valores de máximo y minino de GR que se usaron en los cálculos de volumen de arcilla.

En los campos de estudio, se adquirieron 4 núcleos de 4 in de diámetro, en los que se realizaron análisis básicos y especiales. Estos análisis son la base para la validación del modelo petrofísico y se relacionan en la tabla 1. La totalidad de los análisis se encuentran en los anexos B al E.

Tabla 1.

Inventario de la información de núcleo disponible

Well/Core	X-Ray difraction XRD	Porosidad, permeabilidad y densidad de grano	lad, Formation idad y Resistivity e grano Factor FF		Swirr (v/v) from Capillary PresBe
C1 B-1		Х	Х	х	х
C1-24	х	х	Х	х	х
C2 B-2		х	Х	х	х
C2 A-3	х	Х			х

Nota. Información de núcleo disponible.

5.2 Evaluación petrofísica básica

5.2.1 Cálculo de volumen de arcilla y contenido de shale

Como primer paso en la construcción del modelo petrofísico, se determinó el volumen de arcilla VCL, usando la curva de rayos gamma y el contendido de shale VSH usando las curvas de densidad y porosidad neutrón. Posteriormente, se compararon con los resultados de las dos curvas con los volúmenes de arcilla obtenidos a partir de los análisis de XRD de C1-24 y C2 A-3, convertidos a fracción de volumen (v/v), usando las densidades de cada uno de los minerales encontrados y reportados en % de peso (anexo B).

La comparación de las 2 curvas resultantes con los datos de núcleo mostró que la mejor correlación se dio con el método de densidad y porosidad neutrón. Se usará para este modelo la última curva, que será referida en adelante como VSH. A continuación, se muestran los resultados y la comparación con los datos de núcleo (figura 11).

Figura 11.

Gráficos cruzados y coeficientes de correlación de VCL y VSH con los datos de núcleo.

Nota. Calculo de VSH, a partir de la curva de densidad y porosidad neutrón, y VCL, con los datos de rayos gamma en los ejes X, comparados con los datos de XRD de núcleo en los ejes Y. Los coeficientes de correlación son R=0,44 R=0,82, respectivamente.

A continuación, en la figura 12, se resumen los promedios de volumen de shale VSH para cada pozo.

Figura 12.

Resumen de los volúmenes de shale promedio por pozo

Nota. Valores promedio de VSH por cada pozo estudiado.

En la figura anterior, se puede observar que los valores oscilan entre 1 % y 18 %, lo cual indica un yacimiento relativamente heterogéneo en cuanto al contenido de shale. Sin embargo, dado el bajo contraste observado, el registro de rayos gamma en zonas donde los registros de densidad y porosidad neutrón mostraron contrastes importantes, como se puede ver en el anexo B, se estima que el contenido de shale se debe en gran parte a detritos silicios de tamaño limo más que al contenido de minerales de arcilla como tal.

5.2.2 Porosidad

La porosidad total se calculó promediando la porosidad densidad y la porosidad neutrón. A esta porosidad promedio se le resto la porosidad asociada al contenido de shale para obtener la porosidad efectiva. Posteriormente, se comparó con la porosidad de núcleo a presión de

confinamiento y se hizo la corrección con la ecuación de la obtenida del gráfico cruzado. El coeficiente de correlación con los datos de núcleo es R=0,87 (figura 13).

Figura 13.

Gráficos cruzados y coeficientes de correlación de datos calculados de porosidad con datos de núcleo.

Nota. Gráficos cruzados y coeficientes de correlación con los datos de 4 núcleos de la porosidad. A: Sin corregir. B: Corregido

A continuación, en la figura 14, se resumen las porosidades promedio para cada uno de los pozos en las zonas consideradas como arena neta.

Figura 14.

Nota. Resumen de las porosidades promedio para las arenas netas por pozo. Unidades en v/v. Se usaron los *cut off* de 35 % de VSH y 10 % de porosidad efectiva para clasificar una zona del yacimiento como arena neta. En la figura anterior, se puede observar que las porosidades oscilan para todos los pozos entre 18 % y 22 %, lo que indica que el yacimiento en lo que se considera arena neta tiene una capacidad de almacenamiento buena y relativamente homogénea.

A continuación, en la figura 15, se muestra el resumen de espesores totales y de arena neta para cada uno de los pozos.

Figura 15. Resumen de los espesores totales y de arenas netas por pozo.

Nota. Resumen de los espesores totales y de arenas netas por pozo. Unidades en ft TVD.

Se puede observar en el gráfico anterior que los espesores totales oscilan entre 51 y 97 ft TVD, mientras que lo que se considera arena neta oscila entre los 30 y 77 ft TVD. Lo anterior sugiere que al menos entre el 20 % y el 40 % del yacimiento no se considera con capacidad de almacenamiento. Lo anterior puede ser ocasionado por las variaciones en el contenido de arcilla y en el tamaño de grano propios de ambiente de depósito de este yacimiento.

5.2.3 Saturación de agua irreducible

Se calculó inicialmente la saturación de agua irreducible por medio de la relación propuesta por Buckles [12] entre la porosidad, la saturación de agua irreducible y la constante C. Para hallar una constante C apropiada para el yacimiento objeto de este estudio, se usaron las Swirr medidas en las pruebas de presión capilar (Anexo G) y se multiplicaron por las porosidades medidas en el laboratorio obteniendo un promedio de C=0,032 (tabla 2).

Tabla 2.

Saturaciones de agua irreducible (Swirr) y constante C de Buckles

Well	Plug ID	Depth, ft	Permeability to Air 400psig NCS	Porosity, fraction	Swirr (v/v)	Constante de Buckles (Phie*Swirr)
C1 24	19AH	10516.70	22.90	0.18	0.18	0.03
C1 24	20AH	10516.90	8.02	0.17	0.26	0.04
C1 24	24AH	10522.50	0.96	0.12	0.34	0.04
C1 24	65AH	10566.45	1921.18	0.27	0.07	0.02
C1 24	68AH	10568.25	6887.86	0.28	0.07	0.02
C1 24	74AH	10574.15	593.94	0.24	0.11	0.03
C1 B-1	17R	10080.50	11.31	0.13	0.49	0.07
C1 B-1	33R	10102.60	494.55	0.24	0.18	0.04
C1 B-1	41R	10117.50	867.56	0.21	0.16	0.03
C1 B-1	45R	10123.10	5.90	0.16	0.69	0.11
C1 B-1	48R	10129.50	4221.89	0.24	0.07	0.02
C1 B-1	57R	10142.40	9913.42	0.24	0.05	0.01
C2 B-2	7.00	10470.00	3920.27	0.24	0.10	0.02
C2 B-2	12.00	10483.60	164.24	0.21	0.28	0.06
C2 B-2	30.00	10506.30	707.84	0.18	0.14	0.03
C2 B-2	36.00	10515.30	535.78	0.18	0.16	0.03
C2 A-3	95-S	10628.70	11.64	0.16	0.33	0.05
C2 A-3	89-S	10634.50	24.70	0.17	0.23	0.04
C2 A-3	82-S	10638.15	156.11	0.17	0.15	0.03
C2 A-3	77-S	10643.40	1055.71	0.20	0.07	0.01
C2 A-3	71-S	10648.78	3139.93	0.22	0.10	0.02
C2 A-3	50-S	10667.00	1667.80	0.20	0.11	0.02
C2 A-3	45-S	10671.50	3510.60	0.22	0.07	0.02
C2 A-3	32-S	10681.84	6625.36	0.23	0.07	0.02
C2 A-3	19-S	10692.72	654.06	0.20	0.19	0.04
C2 A-3	17-S	10694.00	1310.38	0.19	0.11	0.02
C2 A-3	12-S	10699.66	9.41	0.12	0.39	0.05
Mean						0.03

Nota. Los datos corresponden a las pruebas de presión capilar.

Como se puede observar en la figura 16, se grafican los valores de la constante C calculadas y las Swirr, tomadas de las pruebas de presión capilar. Para la mayor parte de las muestras, la saturación de agua irreducible es inferior al 20 %. El valor de la constante C (que es

adimensional) aumenta de manera proporcional a la saturación de agua irreducible, probablemente por la disminución en el tamaño de grano.

Figura 16.

Resumen de Swirr y constante C de las pruebas de presión capilar

Nota. Resumen de los espesores totales y de arenas netas por pozo. Unidades en ft TVD.

Posteriormente, se compararon los resultados con los datos de saturación de agua irreducible medidos en las pruebas de presión capilar y se hizo una regresión lineal. Finalmente, se aplicó la corrección (figura 17).

Figura 17.

Gráficos cruzados y coeficientes de correlación de datos calculados de saturación de agua irreducible con datos de núcleo de pozos

Nota. Gráficos cruzados y coeficientes de correlación con los datos de 4 núcleos de la saturación de agua irreducible de núcleo y calculada por registros. A: Sin corregir. B: Corregido

5.2.4 Saturación de agua total

Inicialmente se calculó un gradiente de temperatura para el campo, como se observa en la tabla 3, y se seleccionó la salinidad medida en el agua de producción el pozo C2 A-1 (anexo F), que se encuentra alto en la estructura.

Tabla 3.

Temperaturas de las	bombas e	lectro .	sumergibles

Well	TVD Sensor	T sensor (F°)	T sup (F°)	G.G, gradient (F°/ft)
Dozo 1	8806	221	70.1	0.016
1 020 1 Dana 2	0442	221	79.1	0.010
P020 2	9443	250	79.1	0.010
Pozo 3	9015	224	79.1	0.016
Pozo 4	9121	226	79.1	0.016
Pozo 5	9646	228	79.1	0.015
Pozo 6	9799	231	79.1	0.016
Pozo 7	9847	236	79.1	0.016
Pozo 8	9758	236	79.1	0.016
Pozo 9	9791	237	79.1	0.016
Pozo 10	9716	234	79.1	0.016
Pozo 11	9776	236	79.1	0.016
Pozo 12	10593	237	79.1	0.015
Pozo 13	7865	192	79.1	0.014
Pozo 14	10174	237	79.1	0.016
Pozo 15	10174	237	79.1	0.015
Pozo 16	10174	237	79.1	0.015
Pozo 17	10307	237	79.1	0.015
Pozo 18	10307	237	79.1	0.015
Mean			79.1	0.016

Nota. Se usaron estas temperaturas en el cálculo de gradiente para el campo con las temperaturas de los sensores Se usó la carta GEN-9 para el cálculo de la Rw. En los pozos que tienen OWC, que son C1-13 y C2 B-7, se estimó la Rw por medio del método de *pickett plot* (figura 18). Figura 18.

Gráficos de pickett plott para la calibración de la Rw en los pozos en los pozos C1-13 y C2 B-7 que presentan OWC.

Nota. Gráficos de pickett plott para la calibración de la Rw en los pozos con OWC.

Para la resistividad en el shale Rshl, se revisaron las resistividades de la zona de interés de todos los pozos, donde los valores de VSH fueron cercanos o iguales a 1 y se estableció un valor común para la zona de interés. Todos los parámetros para el cálculo de saturación se resumen a continuación, en la tabla 4.

Tabla 4.

Parámetros petrofísicos para el cálculo de saturación

Well	TVD	Salinity (ppm)	Temperature (°F)	Rw	Rshl	m	n	OWC
<i></i>	10027-18	1702.00	226 72	1.01	14.00	1.92	1.02	
CIB-I	10202 86	1702.00	230.75	1.01	14.00	1.82	1.95	
CI B-2	10202.00	1702.00	239.47	1.00	14.00	1.82	1.93	
CI-10	10061 23	1702.00	237.26	1.00	14.00	1.82	1.93	
CI-11	0008 27	1702.00	231.20	1.01	14.00	1.82	1.95	
CI-12	10226.25	OWC	239.86	5.68	14.00	1.82	1.93	OWC
CI-13	10040.30	1702.00	235.00	1.01	14.00	1.82	1.03	one
CI-1/	10048.20	1702.00	237.06	1.01	14.00	1.82	1.03	
CI-2	10190.02	1702.00	237.00	1.01	14.00	1.82	1.95	
CI-20	9898 58	1702.00	239.29	1.00	14.00	1.82	1.93	
C1-21	9967.47	1702.00	235.79	1.02	14.00	1.82	1.03	
CI-22	0000 10	1702.00	235.79	1.01	14.00	1.82	1.95	
CI-24	10117 31	1702.00	238.14	1.01	14.00	1.82	1.95	
CI-3	10050.85	1702.00	237.10	1.00	14.00	1.82	1.93	
CI-4	102/3 89	1702.00	237.10	1.01	14.00	1.82	1.95	
CI-5	10185.62	1702.00	240.13	1.00	14.00	1.82	1.03	
CI-6	10182.60	1702.00	239.22	1.00	14.00	1.82	1.95	
CI-/	10021.28	1702.00	235.17	1.00	14.00	1.82	1.93	
C1-8	10302 54	1702.00	230.05	0.99	14.00	1.82	1.93	
C1-9	10529.02	1702.00	241.00	0.99	14.00	1.82	1.95	
C2 A-1	10527.52	1702.00	245.02	0.98	14.00	1.82	1.93	
C2 A-2	10567.77	1702.00	245.07	0.98	14.00	1.82	1.93	
C2 A-3	10610.28	1702.00	245.89	0.97	14.00	1.82	1.93	
C2 A-4	10685 19	1702.00	243.05	0.97	14.00	1.82	1.93	
C2 A-5	10553 53	1702.00	245.00	0.98	14.00	1.82	1.93	
C2 A-0	10629.62	1702.00	246.20	0.97	14.00	1.82	1.93	
C2 A-7	10551 59	1702.00	244.97	0.98	14.00	1.82	1.93	
C2 A-8	10677.44	1702.00	246.95	0.97	14.00	1.82	1.93	
C2 A-9	10419.06	1702.00	242.89	0.99	14.00	1.82	1.93	
C2 B-2	10427.88	1702.00	243.03	0.98	14.00	1.82	1.93	
C2 D-4	10396 58	1702.00	242 53	0.99	14.00	1.82	1.93	
C2 B-5	10378 54	1702.00	242.33	0.99	14.00	1.82	1.93	
C2 B-0	10549 12	OWC	244.93	5 44	14.00	1.82	1.93	OWC
C2 B-7	10338 55	1702.00	241.62	0.99	14.00	1.82	1.93	0.110
C2 BC-2	10322.41	1702.00	241 37	0.99	14.00	1.82	1.93	
C2 BC-5	10321 56	1702.00	241.35	0.99	14.00	1.82	1.93	
C2 BC-4	10369 38	1702.00	242.11	0.99	14.00	1.82	1.93	
C2 BC-5	10442 71	1702.00	243.26	0.98	14.00	1.82	1.93	
C2 BC-0	10357.27	1702.00	241.92	0.99	14.00	1.82	1.93	
C2 BC-/	10417.55	1702.00	242.86	0.99	14.00	1.82	1.93	
C2 BC-8	10507 43	1702.00	244.28	0.98	14.00	1.82	1.93	
C2-2	10480.95	1702.00	243.86	0.98	14.00	1.82	1.93	
C2-3	10460.96	1702.00	243.55	0.98	14.00	1.82	1.93	
C2-4	10552.56	1702.00	244.99	0.98	14.00	1.82	1.93	
C2-5				~~~~				

Nota. Se usó la salinidad del pozo C2 A-1 y en los pozos con OWC se calculó por

medio de pickett plot.

En cuanto a los parámetros para el cálculo de saturación, tales como las propiedades eléctricas, se tomaron de las mediciones de núcleo que se resumen en la tabla 5 y los análisis completos están detallados en el anexo D.

Tabla 5. Propiedades eléctricas medidas en núcleo

Well	Porosity exponent "m" composite (confining stress). BQv corrected*	Saturation exponent composite "n" .BQv corrected*
C1 B-1	1.85	1.89
C1 24*	1.78	2.03
C2 B-2	1.83	1.88
Mean	1.82	1.93

Nota. Exponente de porosidad y exponente de saturación corregidos.

A continuación, se resumen los resultados promedio de los cálculos de saturación de agua total e irreducible para cada pozo en la figura 19.

Figura 19

. Saturación de agua total y saturación de agua irreducible por pozo.

Nota. Saturación de agua total y saturación de agua irreducible por pozo.

En la gráfica anterior se puede observar que la saturación de agua total es bastante mayor a la saturación de agua irreducible, con promedios de 20 % y 13 % respectivamente. Según esto, la producción acumulada del yacimiento ha ocasionado que, en el momento de la perforación, la saturación no sea la original, o que la salinidad que se usó para el cálculo de la saturación total de agua no sea para todos los pozos.

Se usó un *cut off* de 50% de saturación de agua para determinar lo que se considera como Net Pay. A continuación, en la figura 20, se resumen los valores de Net Pay total que se estimaron para cada pozo.

Figura 20.

Nota. Valores de net pay por pozo. Unidades en ft TVD.

En la gráfica anterior, se puede observar que los valores de net pay oscilan entre los 10 y los 70 ft TVD. Los pozos con OWC identificado son C1-13 y C2-B7, lo que limita el espesor de net pay para estos dos pozos. Sin embargo, las variaciones en el espesor de net pay en los demás pozos obedece a variaciones en la calidad del reservorio y en la saturación de agua. Lo anterior confirma la heterogeneidad de la cantidad de arena neta por pozo en el yacimiento objeto de este estudio.

5.2.5 Estimación de la permeabilidad

Para la permeabilidad se usaron 3 formulas empíricas basadas en la porosidad efectiva y la saturación de agua irreducible, así como constantes propuestas por diferentes autores: Coates, Tixer y Timur. Los gráficos cruzados de estas permeabilidades se muestran en la figura 21.

Figura 21.

Nota. A. Permeabilidad de Coates; B. Permeabilidad de Tixer. C. Permeabilidad de Timur [14]

Como se puede observar en la figura anterior, las ecuaciones que mejor ajuste presentan con los datos de núcleo son las de Coates (A.) y Tixer (B.), que muestran coeficientes de correlación, ambas con R^2 de 0.81, en comparación con Timur, que presentó R^2 igual a 0.13. Sin embargo, se puede observar que los datos están relativamente dispersos, especialmente en permeabilidades menores a 100 mD. Estas ecuaciones son función de la porosidad efectiva y de la saturación de agua irreducible, por lo que la precisión del resultado depende en gran parte de la precisión de estas dos variables y su calibración con los datos de núcleo.

A continuación, se realizó también un gráfico cruzado de la porosidad y permeabilidad medidas en el núcleo para obtener una regresión matemática que permitiera estimar una permeabilidad empírica con los datos de núcleo. Los resultados se muestran en la figura 22.

Figura 22. Regresión lineal y gráfico cruzado de la relación porosidad permeabilidad del núcleo

Figura 22. (Continuación)

Nota. A. Regresión lineal de la relación porosidad permeabilidad del núcleo; B. Gráfico cruzado de la permeabilidad de núcleo y la curva resultante de la permeabilidad.

En el gráfico anterior, se puede observar que el coeficiente de correlación R^2 es de 0.79, ligeramente menor al de las ecuaciones empíricas Coates y Tixer. Esto puede ser debido a que en este caso la permeabilidad es función únicamente de la porosidad efectiva. Este método es uno de los más usados en la industria y tiene relativamente buena precisión; sin embargo, también se observa una dispersión relativamente importante de los datos en permeabilidades menores a 100 mD.

5.3 Generación de una red neuronal

Para la generación de la red neuronal, se realizó primero el análisis y depuración de la base de datos. Posteriormente, se validó la correlación entre las diferentes variables y la variable objetivo: la permeabilidad. Después se procedió a entrenar la red con una porción del set de datos y, por último, a validar su ajuste con el set de datos de prueba.

5.3.1 Análisis y depuración de la base de datos

Previo a la generación de un modelo de aprendizaje automático, se realizó el análisis y la depuración de los datos para obtener una base de datos coherente y sin datos anómalos. Las estadísticas de la base de datos (completa) se pueden observar en la tabla 6.

Tabla 6.

Resumen estadístico de la base de datos completa

	Core_Kmax	GR	PEF	PHIA	PHIE	PHIN	RHOB	RoMS	RT	SwIrr	SwMS	VCL	VSH
count	177.00	177.00	177.00	177	177.00	177.00	177.00	177	177.00	177.00	177.00	177	177.00
mean	1548.85	44.58	2.03	0.205	0.18	0.24	2.36	14.7	442.38	0.23	0.35	0.292	0.22
std	2445.22	22.25	0.20	0.037	0.06	0.04	0.10	2.49	761.37	0.21	0.23	0.276	0.25
min	0.00	13.96	1.52	0.123	0.04	0.16	2.18	0.724	23.93	0.05	0.08	0.000	0.00
0.250	3.11	27.26	1.93	0.178	0.13	0.21	2.28	13.2	47.72	0.10	0.16	0.066	0.01
0.500	424.00	38.78	2.01	0.210	0.20	0.23	2.33	14.4	172.90	0.14	0.26	0.209	0.12
0.750	2073.70	54.91	2.11	0.234	0.22	0.26	2.43	16.1	460.86	0.29	0.53	0.439	0.35
max	12048.41	114.68	3.53	0.277	0.27	0.36	2.61	20.4	4667.66	1.00	1.00	1.00	1.00

Nota. Base de datos con completa con 177 muestras, la propiedad objetivo tiene un promedio de 1548 mD. Se realizó un análisis estadístico por medio del gráfico de cajas y bigotes para identificar los valores anómalos (outliers), utilizando los cuartiles (o percentiles) y el rango intercuartílico (IQR por sus siglas en inglés) dentro de cada grupo de datos para cada variable analizada. Una vez cargada la base de datos por medio de la librería Pandas, se usaron las librerías Matplotlib y Seaborn para generar gráficos de cajas y bigotes, como se ve en la figura 23.

Figura 23.

Gráfico de cajas y bigotes

Nota. Los puntos rojos son los datos anómalos; los extremos de las líneas, los máximos y mínimos; lo que está dentro de los rectángulos, los cuartiles superior e inferior; la línea en el medio es la media.

Dentro de la caja (el rectángulo con la línea naranja en el medio) se representa el rango intercuartílico (IQR por sus siglas en ingles), que es la diferencia entre el tercer cuartil (Q3) y el primer cuartil (Q1) de cada grupo de datos. La línea naranja dentro de la caja es la mediana de los datos. En este método de análisis, se divide el conjunto de datos en 4 partes, para ayudar a entender su distribución. En el primer cuartil (Q1) están el 25 % inferior de los datos de la mitad superior, y el tercer cuartil (Q3), también conocido como el cuartil superior, es el valor que separa el 75 % inferior de los datos del 25 % superior. Los bigotes se extienden hasta los valores mínimos y máximos dentro de 1,5 veces el rango intercuartílico (IQR), que es la distancia entre Q1 y Q3. Los valores fuera de este rango se consideran anómalos u *outliers*, y se representan como puntos individuales.

Se excluyeron de la base de datos los valores anómalos identificados en el gráfico anterior, con el fin de enfocar el modelo de aprendizaje automático a los datos más representativos del yacimiento. Las estadísticas de la base de datos (excluyendo los datos anómalos) se pueden observar en la tabla 7.

	Core_Kmax	GR	PEF	PHIA	PHIE	PHIN	RHOB	RoMS	RT	SwIrr	SwMS	VCL	VSH
count	132.00	132.00	132.00	132	132.00	132.00	132.00	132	132.00	132.00	132.00	132	132.00
mean	1013.30	41.04	2.01	0.206	0.18	0.23	2.35	15.2	295.85	0.19	0.33	0.248	0.17
std	1390.97	17.35	0.14	0.034	0.05	0.04	0.09	2.11	336.16	0.12	0.19	0.217	0.18
min	0.00	17.50	1.63	0.124	0.08	0.16	2.18	11.2	23.93	0.05	0.09	0.000	0.00
0.250	6.90	27.49	1.92	0.182	0.14	0.21	2.28	13.6	49.11	0.10	0.17	0.068	0.01
0.500	412.76	36.94	1.99	0.210	0.19	0.23	2.33	14.8	164.85	0.14	0.27	0.205	0.12
0.750	1486.98	49.95	2.07	0.231	0.22	0.26	2.42	16.5	378.14	0.25	0.48	0.355	0.30
max	5822.50	91.09	2.37	0.277	0.27	0.35	2.53	20.4	1273.98	0.55	0.77	0.901	0.62

Tabla 7. Resumen estadístico de la base de datos sin los datos anómalos

Nota. Base de datos de entrenamiento con 132 muestras, la propiedad objetivo tiene un promedio de 1013 mD.

Posteriormente, se generaron gráficos de calor con la base de datos filtrada, con el propósito de visualizar la correlación que existe entre cada una de las variables y la variable objetivo, que es la permeabilidad medida en los núcleos. Se puede observar el grafico de calor completo en la figura 24.

Figura 24. Gráfico de calor de todas las variables de la base de datos seleccionada

Nota. Se muestran los valores de correlación entre las variables. Están incluidas todas las variables seleccionadas. Unidades en fracción de -1 a 1. La escala de colores representa la correlación positiva (en azul) y negativa (en rojo) con las demás variables, siendo la máxima correlación posible 1 y -1, y la mínima cero (blanco).

La intensidad de los colores representa el grado de correlación entre cada variable de los ejes vertical y horizontal, siendo el azul oscuro la mayor correlación positiva y el rojo oscuro la

mayor correlación negativa. Todos los valores se encuentran entre -1 y 1, y cero expresa que no tiene ninguna correlación con la otra variable y está representado con color blanco.

El propósito del análisis de correlación por medio del gráfico anterior es identificar las variables que tengan mayor correlación con la variable objetivo de la red neuronal, que es la permeabilidad. La idea es excluir las variables de menor correlación para optimizar el proceso de regresión que ejecutará la red neuronal en el próximo paso; de esta manera, la red neuronal se enfocará a encontrar las relaciones matemáticas entre las variables más relacionadas con la permeabilidad, para que el proceso de entrenamiento sea más corto y los resultados más precisos.

A partir del análisis de la gráfica anterior, se procedió a excluir las variables de factor foto eléctrico (PEF), porosidad neutrón (PHIN) y resistividad en la zona de agua de Simandoux modificado (RoMS), los cuales presentaron valores de correlación más bajos: -0.27, 0.08 y - 0.18, respectivamente, representados con los colores más claros de la gráfica de calor.

Las variables con mayor grado de correlación con la permeabilidad de núcleo fueron: VSH (-0.57), SwMS (-0.53), Swirr (-0.52), RHOB (-0.51) y PHIE (0.59), lo cual es coherente con las fórmulas empíricas convencionales que usan como parámetros de entrada Swirr y PHIE. Así pues, las variables que se usaron para el entrenamiento de la red fueron: volumen de shale (VSH), volumen de arcilla (VCL), saturación total de agua de Simandoux modificado (SwMS), saturación de agua irreducible (Swirr), resistividad (RT), densidad (RHOB), porosidad efectiva (PHIE), porosidad total (PHIA) y rayos gamma (GR), todas con valores de correlación mayores a 0.4 y menores a -0.4. En la figura 25 se presenta el gráfico de calor con las variables seleccionadas.

Figura 25. Gráfico de calor de las variables de la base de datos filtrada.

Nota. Solo se incluyeron las variables con más correlación con la permeabilidad medida en núcleo. Unidades en fracción de -1 a 1. La escala de colores representa la correlación positiva (en azul) y negativa (en rojo) con las demás variables, siendo la máxima correlación posible 1 y -1, y la mínima, cero (blanco).

En la figura 26 se observan las correlaciones de cada una de las variables con la permeabilidad. Se excluyeron del set de datos de entrenamiento las variables con menor correlación con la propiedad objetivo para optimizar el entrenamiento de la red.

Figura 26. Gráfico de calor de las variables de la base de datos filtrada

Correlación de cada variable con Perm de núcleo

Nota. La correlación es adimensional y se expresa entre -1 y 1. La escala representa la correlación positiva y negativa con la permeabilidad de núcleo, siendo la máxima correlación posible 1 y -1, y la mínima, cero (blanco). En gris están las variables con mayor correlación y en rosa las de menor correlación.

5.3.2 Generación del modelo de aprendizaje automático

A continuación, se describe la arquitectura y los componentes principales de la red neuronal seleccionada para este trabajo: el Multi-Layer Perceptron Regresor MLP, que es un tipo de red neuronal especialmente concebida para tareas de regresión, cuyo objetivo es predecir un valor continuo. El MLP Regresor está constituido por varias capas de nodos (neuronas), en

donde cada neurona está conectada a todas las neuronas de la capa anterior y la capa siguiente, formando una red completamente conectada.

• Componentes del MLP Regresor utilizado:

- Capa de entrada: Son 9 variables (VSH, VCL, SwMS, Swirr, RT, RHOB, PHIE, PHIA, GR) con 132 datos cada una.
- Capas ocultas: Son 3 capas situadas entre la capa de entrada y la capa de salida, con 64 neuronas cada una. El número de capas ocultas y nodos se determinó con ensayo y error. Se identificó que esta combinación daba un ajuste adecuado en un tiempo de entrenamiento corto. No existe una fórmula única para determinar estos valores.
- Capa de salida: Es la última capa de la red. En este caso, se trata de los 132 datos de permeabilidad de núcleo, que son la propiedad objetivo.
- Funciones de activación: Se usó la función ReLU (Rectified Linear Unit), que permite a la red aprender relaciones complejas. Es una función no lineal aplicada a las salidas de las neuronas.
- Algoritmo de optimización: En el MLP regresor, el algoritmo de optimización por defecto es Adam (Adaptive Moment Estimation). Este algoritmo ajusta las tasas de aprendizaje individuales para cada parámetro.
- Función de pérdida: Para esta regresión se usó la función de pérdida error cuadrático medio (MSE). Esta función cuantifica el error entre las predicciones del modelo y los valores reales.

A continuación, se representa de manera gráfica en la figura 27 la arquitectura de la red neuronal utilizada.

Figura 27.

Arquitectura esquemática de la red neuronal

Nota. Las flechas representan las conexiones, los pesos y biases que hay entre los nodos de cada capa.

Funcionamiento de un MLP Regresor

Los pesos y biases del MLP se inicializan aleatoriamente. Posteriormente, los datos de entrada pasan a través de la red capa por capa. En cada neurona, se calcula la suma ponderada de las entradas y se aplica una función de activación. El resultado se pasa a la siguiente capa hasta llegar a la capa de salida, produciendo la predicción final. La predicción se compara con el valor real y se usa la función de pérdida para calcular el error. El error se retropropaga a través de la red, capa por capa. Los gradientes de la función de pérdida con respecto a los pesos y biases se calculan usando el algoritmo de retropropagación. Los pesos y biases se actualizan usando un algoritmo de optimización como el descenso de gradiente, para minimizar el error. Los pasos de propagación hacia adelante y hacia atrás se repiten para múltiples iteraciones (épocas) hasta que el modelo converja a una solución aceptable.

A continuación, se describe el proceso de generación de la red neuronal, mostrando las líneas de código utilizada después de la descripción de cada paso.

Primero, se importan las librerías Pandas y Matplotlib para leer y graficar la base de datos filtrada, como se puede observar en la imagen 1.

Figura 28.

Código de importación de librerias Pandas y Matplotlib e importación de la base de datos

Nota. Visualización de la plataforma de compilación del código.

Posteriormente, a partir de la base de datos general, se procede a seleccionar los datos para entrenar la red neuronal y los datos para hacer las pruebas. En este caso, se usaron 3 de los 4 pozos con núcleo para entrenamiento de la red y 1 pozo para validación. Se seleccionaron los pozos C1 B-1, C2 A-3 y C1-24 como set de datos de entrenamiento y el pozo C2 B-2 como pozo de prueba. En la base de datos, se cambiaron los nombres de los pozos a PozoS1, Pozo N2, Pozo24 y PozoS2, respectivamente, tal como se observa en la imagen 2.

Figura 29.

Código de identificación de los sets de datos organizados por pozo

```
1 df['Pozo'].unique()
Python

w array(['Pozo24', 'PozoN3', 'PozoS2'], dtype=object)

1 # Training Wells
2 training_wells = ['PozoS1', 'PozoN3', 'Pozo24']
3
4 # Test Well
5 test_well = ['PozoS2']

[390]
```


Nota. En esta parte, se seleccionaron los pozos de entrenamiento y el pozo de prueba.

En la tabla 8, se muestra el resumen estadístico del set de datos seleccionados para el entrenamiento de la red neuronal.

Tabla 8. Resumen estadístico de los datos seleccionados para el entrenamiento de la red neuronal

	DEPTH	Core_Kmax	GR	PEF	PHIA	PHIE	PHIN	RHOB	RoMS	RT	SwIrr	SwMS	VCL	VSH
count	107.00	107.00	107.00	107	107.00	107.00	107.00	107	107.00	107.00	107.00	107	107.00	107
mean	10477.99	905.10	38.59	2.01	0.20	0.18	0.24	2.35	15.12	224.65	0.20	0.359	0.25	0.199
std	230.89	1352.30	15.86	0.144	0.03	0.05	0.05	0.092	2.02	253.85	0.13	0.192	0.22	0.184
min	10079.80	0.00	17.50	1.63	0.12	0.08	0.16	2.18	11.19	23.93	0.05	0.096	0.00	0.000
0.250	10137.55	2.79	26.20	1.93	0.18	0.13	0.21	2.28	13.57	42.34	0.10	0.191	0.07	0.015
0.500	10566.90	267.69	34.51	2.00	0.21	0.18	0.23	2.33	14.69	135.92	0.16	0.321	0.20	0.166
0.750	10650.40	1175.51	47.69	2.09	0.23	0.22	0.26	2.43	15.98	315.73	0.29	0.530	0.36	0.343
max	10701.40	5717.12	86.13	2.37	0.28	0.27	0.35	2.53	20.41	1191.19	0.55	0.769	0.90	0.619

Nota. Base de datos seleccionada para el entrenamiento de la red neuronal.

En la tabla 9, se muestra el resumen estadístico del set de datos seleccionados para la prueba de la red neuronal.

	DEPTH	Core_Kmax	GR	PEF	PHIA	PHIE	PHIN	RHOB	RoMS	RT	SwIrr	SwMS	VCL	VSH
count	25.00	25.00	25.00	25.0	25.00	25.00	25.00	25.0	25.00	25.00	25.00	25.0	25.00	25.0
mean	10494.66	1476.40	51.55	1.99	0.22	0.20	0.23	2.33	15.52	600.59	0.13	0.222	0.23	0.073
std	17.02	1486.05	19.75	0.111	0.03	0.03	0.03	0.061	2.46	461.38	0.06	0.143	0.20	0.085
min	10464.60	0.10	23.28	1.85	0.14	0.12	0.18	2.23	11.71	32.15	0.07	0.092	0.00	0.000
0.250	10483.60	311.40	33.96	1.90	0.21	0.20	0.21	2.30	13.22	136.99	0.11	0.120	0.05	0.000
0.500	10496.10	771.70	49.94	1.97	0.21	0.21	0.22	2.32	15.84	566.17	0.12	0.154	0.21	0.033
0.750	10506.10	2689.70	62.21	2.01	0.24	0.22	0.24	2.33	16.85	1004.35	0.13	0.325	0.33	0.135
max	10524.10	5822.50	91.09	2.36	0.26	0.25	0.27	2.49	20.40	1273.98	0.33	0.643	0.63	0.275

Tabla 9. Resumen estadístico de los datos seleccionados para la prueba de la red neuronal

Nota. Base de datos seleccionada para la prueba de la red neuronal.

Posteriormente, se implementó la red neuronal seleccionada, MLP Regresor, desde la librería Scikit-learn. También se importaron las herramientas StandarScaler y Metrics desde la misma librería, para mejorar la red neuronal y validar el ajuste de los datos, tal como se observa en la imagen 3.

Figura 30.

Código de carga de las librerias de aprendizaje automático

```
1 from sklearn.model_selection import train_test_split
2 from sklearn.neural_network import MLPRegressor
3 from sklearn.preprocessing import StandardScaler
4 from sklearn import metrics
[394]
```

Python

Nota. Visualización de la plataforma de compilación del código.

Después, se seleccionaron las variables de la "capa de entrada" y la variable "objetivo" o la capa de salida. En este caso, los datos de la capa de entrada son 'GR', 'PHIA', 'PHIE', 'RHOB', 'RT', 'SwIrr', 'SwMS', 'VSH' y la variable de salida u objetivo 'Core_Kmax', que es como se ha llamado a la permeabilidad medida en el núcleo, tal como se observa en la imagen 4.

Figura 31.

Código de selección de variables de entrada y variable objetiva

```
1 X = train_val_df[['GR', 'PHIA', 'PHIE', 'RHOB', 'RT', 'SwIrr', 'SwMS', 'VSH']]
2 y = train_val_df['Core_Kmax']
Python
[395]
1 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
[397]
Python
```

Nota. Visualización de la plataforma de compilación del código.

Posteriormente, se aplicó el StandardScaler, que es una herramienta de la biblioteca Scikitlearn en Python, que se utiliza para estandarizar las características de un conjunto de datos. La estandarización, en este contexto, significa transformar los datos, de tal manera que tengan una media de 0 y una desviación estándar de 1.

Posteriormente, se pasa a la construcción del modelo como tal, como se puede observar en la imagen 5.

Figura 32.

Código de construcción del modelo con MLPRegresor

Nota. Visualización de la plataforma de compilación del código.

Como se puede observar en la figura anterior, en este caso el número de capas ocultas es 64. La función de activación es ReLu (Rectified Linear Unit), una función de activación utilizada ampliamente en redes neuronales, especialmente en redes neuronales profund; el término "random state 42" se refiere a la configuración de la semilla del generador de números aleatorios en el contexto de bibliotecas de machine learning y análisis de datos en Python.

Específicamente, se utiliza para asegurar la reproducibilidad de los resultados al realizar operaciones que involucren aleatoriedad, como dividir un conjunto de datos en entrenamiento y prueba, inicializar pesos en redes neuronales o realizar validaciones cruzadas. El término "max_iter=2000" establece el límite de iteraciones para garantizar que el entrenamiento del modelo sea manejable en términos de tiempo y recursos, mientras busca alcanzar la convergencia del algoritmo. Este parámetro es crucial para balancear la eficiencia computacional y la precisión del modelo en aplicaciones de aprendizaje automático y optimización, que para este caso son 2.000 iteraciones.

5.3.3 Validación de resultados de la red neuronal

A continuación, mediante la herramienta "metrics", se proceden a validar los resultados de la red neuronal mediante los códigos que se muestran en la imagen 6.

Figura 33.

Códigos de medición de metricas de validacion y R2

Nota. Visualización de la plataforma de compilación del código.

Como se puede observar en la imagen anterior, el $R^2 = 0.74$, lo que indica el grado de ajuste que hay entre el set de prueba y el ser de datos de núcleo es aceptable. Este valor es relativamente menor a los valores de ajuste con las ecuaciones de Tixer y Coates, que son mayores a 0.8; sin embargo, esto puede estar ocasionado por el tamaño de la muestra, es decir, el set de prueba en este caso tiene menor número de datos.

A continuación, se procede a aplicar la red neuronal al set de datos de validación, que corresponden al Pozo-S2, tal como se muestra en la imagen 7.

Figura 34.

Códigos de selección de set de datos para ensayo de la red neuronal

Nota. Visualización de la plataforma de compilación del código.

En la figura 35, se muestra un gráfico cruzado entre los datos medidos en núcleo y los datos estimados con la red neuronal en el set de datos de prueba.

Figura 35.

Gráfico cruzado de los datos reales con los datos estimados por la NN en el pozo de prueba.

Nota. Visualización de grafico cruzado con los datos del set de prueba.

En la figura anterior, se puede observar que los datos representan un ajuste relativamente bueno y con una baja dispersión en el pozo analizado.

En la figura 36, se muestra un gráfico en profundidad de la curva estimada con la red neuronal y los datos de núcleo en el pozo de prueba.
Figura 36.

Permeabilidad estimada con la NN comparada con la permeabilidad real con datos de núcleo

Nota. Visualización en de permeabilidad vs profundidad de con los datos del set de prueba.

El análisis de los resultados de la permeabilidad de la red neuronal en comparación con los otros métodos se describe a continuación.

5.4 Comparación de resultados de la red neuronal con las fórmulas empíricas

En la figura 37 se muestran las permeabilidades calculadas por los diferentes métodos, tomando como muestra el mismo set de datos que se usó para probar la red neuronal y que corresponden a 25 datos del núcleo del pozo C2-B2.

Figura 37.

Comparación de las permeabilidades calculadas para el set de datos de prueba

Nota. Se muestran las permeabilidades medidas en núcleo y las calculadas por los métodos de redes neuronales, Tixer, Timur, Coates, así como la regresión a partir de datos de núcleo para el set de datos de prueba. Todas las unidades están en milidarcys mD.

Como se puede observar en la figura anterior, todas las curvas siguen la misma tendencia general en cuanto a incrementos y decrementos de la permeabilidad. Sin embargo, la curva

estimada con la red neuronal (de color morado) se acerca más a los datos de referencia del núcleo (en color rojo) en zonas donde hay cambios abruptos de permeabilidad, por ejemplo, entre las profundidades 10.480 y 10.490 ft MD y entre 10.510 y 10.520 ft MD. En la zona de mayor permeabilidad, que está entre 10.460 y 10.470 ft MD también se observa un mayor ajuste de los datos estimados con la red neuronal, en comparación con los demás métodos, que en todos los casos sobrestiman la permeabilidad en comparación con el núcleo. En contraste, entre las profundidades 10.480 y 10.520 ft MD, que corresponde a la mayor parte de la muestra analizada en términos generales, los métodos diferentes a la red neuronal subestiman la permeabilidad en comparación con la del núcleo.

En cuanto a las bajas permeabilidades que tienen sus valores más bajos hacia el tope y la base de la columna, en 10.465 ft MD y 10.523ft MD respectivamente, no hay un buen ajuste de la red neuronal en el dato de la base y ninguno de los métodos es predictivo en el dato del tope, que corresponde a la mínima permeabilidad de la muestra analizada. Este es un aspecto para mejorar con relación a la estimación de la permeabilidad; sin embargo, dado que el bajo ajuste de los datos se encuentra en rangos de menores a 10 mD, se considera que el impacto de la baja predicción en estos rangos de valores es bajo, dado que estas permeabilidades no tienen una alta capacidad de entrega de fluidos a los pozos y, por lo tanto, no representan un problema para el modelamiento estático. En cuanto al promedio y la desviación estándar, se resumen en la figura 38.

Figura 38.

Comparativo de los promedios y desviaciones estándar de las permeabilidades

Nota. Se muestran los promedios y las desviaciones estándar para las permeabilidades medidas en núcleo y las calculadas por los métodos de redes neuronales, Tixer, Timur, Coates, y la regresión a partir de datos de núcleo para el set de datos de prueba. Todas las unidades están en milidarcys mD.

En la figura anterior, se puede observar que la desviación estándar de los datos de núcleo es muy alta y casi similar al promedio en sí mismo. Esto puede indicar que las permeabilidades en el yacimiento estudiado están en un amplio rango y son relativamente heterogéneas. Se puede observar también que el promedio más cercano al del núcleo es el de los datos provenientes de la red neuronal y tiene la desviación estándar más baja. Esto indica que el método de la red neuronal captura de mejor manera esta propiedad en términos generales, en comparación con otros métodos. En contraste, las fórmulas de Tixer, Timur y Coates subestiman esta propiedad, mientras que el método de regresión de núcleo la sobrestima.

Se seleccionó el parámetro del R^2 como parámetro de medición para comparar la precisión general de cada modelo de predicción. A continuación, en las figuras 39 y 40, se muestran

los gráficos cruzados para la muestra analizada de las permeabilidades de núcleo en el eje y con las permeabilidades calculadas por los diferentes métodos en el eje x.

Figura 39.

Gráfico cruzado y coeficiente de correlación con el método de redes neuronales

Nota. Se muestran los datos de permeabilidades medidas en núcleo y las calculadas por los métodos de redes neuronales y la regresión a partir de datos de núcleo para el set de datos de prueba con el coeficiente de correlación. Todas las unidades están en milidarcys mD.

Figura 40.

Gráficos cruzados y coeficientes de correlación con los métodos de Tixer, Timur, Coates, y las regresiones a partir de datos de núcleo.

Nota. Se muestran los datos de permeabilidades medidas en núcleo y las calculadas por los métodos de Tixer, Timur, Coates, y las regresiones a partir de datos de núcleo para el set de datos de prueba con los coeficientes de correlación. Todas las unidades están en milidarcys mD.

En las gráficas anteriores, se puede observar que el modelo de regresión que mejor se ajusta a los datos reales, según el parámetro del R^2 , es el de la red neuronal, tal como se observa en la figura 28, con un valor de 0.61, en comparación con los otros métodos, en los que el R^2 oscila entre 0.51 y 0.56, como se ven en la figura 30. También, se puede observar en las dos gráficas anteriores que la mayoría de los datos de permeabilidad de núcleo son superiores a los 100 mD, y que los valores inferiores son más la excepción que la regla. Estos valores por debajo de 100 mD generan heterogeneidad en la muestra analizada y pueden ocasionar que el ajuste no sea mayor. A continuación, en la tabla 10, se resumen los R^2 que resultaron del análisis de la muestra seleccionada para cada uno de los métodos.

Tabla 10. Comparación de los valores de \mathbb{R}^2 de los diferentes métodos para estimar la permeabilidad.

R^2
0.51
0.56
0.54
0.51
0.61

6 CONCLUSIONES

En el yacimiento estudiado en el presente trabajo, se calculó para las arenas netas un volumen shale que oscila entre 1 % y 18%, y una porosidad efectiva que oscila entre 18 % y 22 %, lo que indica que el yacimiento tiene una buena capacidad del almacenamiento. El coeficiente de correlación R^2 de la porosidad efectiva calculada con los datos de núcleo fue de 0.87. Se encontró que el uso de las curvas de densidad y porosidad neutrón para calcular el VSH es más preciso que el uso de la curva de GR, dado el bajo contraste de esta curva en las arenas de altas y bajas propiedades. Lo anterior indica que las variaciones en la calidad del yacimiento se deben a la presencia de granos de cuarzo de tamaño limo y no al contenido de minerales de arcilla.

Las saturaciones de agua total e irreducible se calcularon con promedios de 20 % y 13 %, respectivamente. Lo anterior indica que la producción acumulada del yacimiento ha ocasionado que en el momento de la perforación la saturación no sea la original. Por lo anterior, estimar la saturación de agua irreducible es clave por dos razones: primero, para la estimación del petróleo original en sito OOIP y, segundo, porque es un input para calcular la permeabilidad.

La permeabilidad promedio calculada para el yacimiento está en el orden de 1900 mD para los dos campos estudiados El promedio de la permeabilidad con el método de redes neuronales corresponde al 94 % del promedio de los datos de núcleo, en comparación con las otras ecuaciones cuyos promedios oscilan entre 53 % y 75 %, lo cual indica que estos métodos están subestimando la permeabilidad de referencia. En cuanto al promedio obtenido con el método de la regresión, corresponde al 140 % del promedio de los datos de núcleo, lo cual indica que este método sobrestima la permeabilidad de referencia.

El análisis de las desviaciones estándar de los datos obtenidos por los diferentes métodos también indica que el método de las redes neuronales es el más preciso. La desviación estándar con el método de redes neuronales es de 870 mD, mientras que para los otros métodos oscila entre 1200 y 3051 mD. De lo anterior, se puede concluir que los datos

estimados a partir del método de redes neuronales es el que presenta una menor dispersión de los datos.

Las estimaciones de esta propiedad realizadas por medio de ecuaciones convencionales tuvieron valores de ajuste de R^2 que oscilan entre 0.51 y 0.56. Por otra parte, el R^2 de la permeabilidad obtenida a partir de las redes neuronales artificiales fue de 0.61, ligeramente mayor a las demás para este caso en particular.

La mayor precisión y la menor desviación estándar de la permeabilidad obtenida a partir del método de redes neuronales se debe al mayor número de variables involucradas, así como al mayor número de iteraciones matemáticas propias de los métodos de aprendizaje automático. Si bien para este trabajo se contó con la información de 4 núcleos, el tamaño de la muestra con la que se entrenó la red neuronal es relativamente pequeño (132 muestras), lo cual puede limitar la representatividad del resultado para todo el yacimiento. Ante la imposibilidad de contar con nuevos núcleos en algunos yacimientos, una posibilidad para aumentar el tamaño del set de datos de entrenamiento es hacer muestreos más detallados y estadísticamente distribuidos de los núcleos disponibles, así se tendría una mayor representación de las heterogeneidades del yacimiento.

El cálculo de una permeabilidad más ajustada a los datos reales tiene un impacto muy positivo en la predictibilidad de los modelos dinámicos, dado que es la propiedad que más influye en la interconectividad del yacimiento; a su vez, un modelo dinámico más predictivo permite una mejor planeación y una gestión más eficiente del yacimiento.

El uso de redes neuronales para estimar propiedades continuas se puede extender al cálculo de otras propiedades diferentes a la permeabilidad como la porosidad y la saturación de agua, que por causa de las bajas salinidades en la cuenca de los Llanos Orientales es un parámetro difícil de estimar con las fórmulas convencionales.

El uso de la inteligencia artificial en petrofísica es un nuevo enfoque para abordar esta diciplina, y tiene un enorme potencial para optimizar los flujos de trabajo. Su uso abre un

gran espectro de posibilidades, no solo para mejorar los cálculos de propiedades continuas, sino para realizar exploración y análisis de los datos en las fases iniciales del flujo de trabajo.

Adicionalmente, el uso adecuado de los modelos de aprendizaje automático podría eventualmente disminuir el número de registros a adquirir en determinados campos donde se tenga información suficiente para entrenar los modelos, lo que podría repercutir directamente en los costos de los proyectos y contribuir a la viabilidad económica de los mismos.

7 RECOMENDACIONES

Ante el uso de herramientas LWD para adquirir los registros de pozo, se debe buscar una fuente alternativa de información de temperatura de fondo para calcular la resistividad del agua de formación a partir de la salinidad. Lo anterior, debido al efecto refrigerante de lodo durante la perforación, lo que lleva a que se realicen mediciones erradas de temperatura de formación con las herramientas LWD.

Antes de cualquier flujo de trabajo petrofísico, se debe realizar un análisis de los datos disponibles para identificar las tendencias generales e identificar los datos anómalos. Este análisis de datos es de especial importancia si se van a implementar modelos de aprendizaje automático, debido a que los datos anómalos pueden entorpecer el proceso de aprendizaje automático y disminuir el ajuste de los datos pronosticados con los reales.

Existen un amplio número de ecuaciones y métodos para generar un modelo petrofísico a partir de registros de pozo; sin embargo, los datos de núcleo son la base fundamental para validar y corregir estos modelos; por esta razón, siempre que sea posible se debe integrar esta información al modelo en cada una de sus etapas.

Existen otras librerías de aprendizaje automático en Python para predecir propiedades continuas diferentes a Scikit-Learn, que fue la usada en este trabajo. Las más usadas son TensorFlow de Google, PyTorch de Facebook, XGBoost, LigthGMB de Microsoft, CatBoost, y Statsmodels. Estas bibliotecas están especialmente concebidas para tareas de regresión y predicción de propiedades continuas. El uso de varias librerías en lugar de una sola podría mejorar eventualmente la precisión de la permeabilidad o de cualquier propiedad, y podría servir para determinar cuál librería es la más apropiada para implementar en los flujos de trabajo petrofísico. Por lo anterior, en el caso de futuros flujos de trabajo petrofísico como el elaborado en este trabajo, es recomendable probar con varias librerías y con diferentes formas de entrenamiento de los algoritmos, con el fin de comparar los resultados y aumentar la robustez y precisión del modelo.

El aprendizaje automático está siendo ampliamente utilizado para analizar datos de manera masiva y generar algoritmos que encuentren relaciones entre variables de entrada y salida, lo que, sin lugar a dudas, tiene un enorme potencial. Sin embargo, estas herramientas deben ser usadas con criterio y siguiendo la lógica y los principios de la geología y la petrofísica. Este trabajo es una contribución a la implementación de esta herramienta en el yacimiento objeto de este estudio.

De los resultados obtenidos en este trabajo, se puede concluir que los registros adquiridos con la tecnología *logging while drilling* (LWD) tienen la calidad suficiente para realizar la caracterización petrofísica de un yacimiento en comparación con la adquisición convencional de registros de cable.

REFERENCIAS

- S. R. García-Benítez and O. A. Arana-Hernández, "Neural model to estimate permeability from well logs and core data," *Boletin de Geologia*, vol. 45, no. 1, pp. 141–153, 2023, doi: 10.18273/REVBOL.V45N1-2023007.
- [2] S. Singh, "Permeability Prediction Using Artificial Neural Network (ANN): A Case Study of Uinta Basin," in SPE Annual Technical Conference and Exhibition, Dallas, Texas: SPE Annual Technical Conference and Exhibition, 2005.
- [3] Y. Maslennikova, "SPE 167640-STU Permeability Prediction Using Hybrid Neural Network Modelling."
- [4] S. Cuddy, "The benefits and dangers of using artificial intelligence in petrophysics," *Artificial Intelligence in Geosciences*, vol. 2, pp. 1–10, Dec. 2021, doi: 10.1016/j.aiig.2021.04.001.
- [5] D. Barrero, A. Pardo, C. A. Vargas, and J. F. Martínez, *Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal.* 2007.
 [Online]. Available: www.anh.gov.co
- [6] L. Sarmiento, "Llanos Basin," in *Petroleum geology of Colombia*, vol. 9, F. Cediel and G. Ojeda, Eds., Fondo Editorial Universidad EAFIT, 2011, pp. 104–111. Accessed: Jul. 24, 2024. [Online]. Available: https://www.anh.gov.co/es/hidrocarburos/informaci%C3%B3n-geol%C3%B3gica-ygeof%C3%ADsica/estudios-integrados-y-modelamientos/petroleum-geology-ofcolombia/
- [7] Robert W. Dalrymple, Duncan A. Mackay, Aitor A. Ichaso, and Kyungsik S. Choi, "Processes, Morphodynamics, and Facies of Tide-Dominated Estuaries," in *Principles* of *Tidal Sedimentology*, Jr. Richard A. Davis, Ed., Springer Dordrecht Heidelberg London New York, 2012, ch. 5, pp. 93–107.

- [8] P. Desjardins, L. Buatois, and M. Mangano, "Tidal Flats and Subtidal Sand Bodies," in *Developments in Sedimentology*, vol. 64, 2012, pp. 529–561. doi: 10.1016/B978-0-444-53813-0.00018-6.
- [9] J. O. Amaefule, M. Altunbay, D. G. Kersey, and D. K. Keelan, "SPE 26436 Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells," 1993.
- [10] A. Khatchikian, *Registros de pozo*, 1st ed., vol. 1. 2011.
- [11] E. R. (Ross) Crain, "Crain's Petrophysical Handbook." Accessed: Mar. 27, 2024.[Online]. Available: http://www.spec2000.net/
- [12] R. S. Buckles, "Correlating and averaging connate water saturation data," *Journal of Canadian Petroleum Technology*, vol. 9, no. 1, pp. 42–52, 1965.
- [13] Ch., and B. P. Bardon, "Formation Water Saturation In Shaly Sands," SPWLA 10th Annual Logging Symposium, 1969, Accessed: Mar. 28, 2024. [Online]. Available: https://geoloil.com/modifiedSimandoux.php
- [14] B. Balan and S. Ameri, "State-Of-The-Art in Permeability Determination From Well Log Data: Part 1-A Comparative Study, Model Development," pp. 17–21, 1995.
- [15] A. McDonald, "andymcdgeo/Petrophysics-Python-Series: v1.0.0," Jul. 2022, Zenodo. doi: 10.5281/zenodo.6845160.

ANEXOS

Anexo 1. Sumario petrofísico

Well	Espesor (ft TVD)	Esperosr arena neta (ft TVD)	VSH (v/v)	Porosity (v/v)	Net Pay (ft TVD)	Phi Pay (v/v)	Sw Irr (v/v)	Sw Total (v/v)	Permeabilid d promedic (mD)
C1 B-1	78.50	46.50	0.08	0.20	46.50	0.20	0.13	0.22	1451
C1 B-2	67.22	32.00	0.18	0.18	17.50	0.18	0.18	0.31	732
C1-10	62.10	30.96	0.11	0.20	30.96	0.20	0.15	0.16	1770
C1-11	69.15	43.00	0.12	0.19	41.50	0.19	0.16	0.20	1438
C1-12	85.77	48.50	0.11	0.20	48.50	0.20	0.15	0.20	1991
C1-13	88.38	62.89	0.04	0.21	29.39	0.21	0.12	0.27	2185
C1-17	53.32	42.38	0.06	0.21	41.88	0.21	0.12	0.19	2102
C1-2	57.47	30.50	0.13	0.19	26.50	0.19	0.16	0.21	1153
C1-20	68.07	42.50	0.10	0.20	42.00	0.20	0.14	0.28	1551
C1-21	51.30	30.50	0.09	0.20	30.00	0.21	0.13	0.17	2146
C1-22	62.79	39.00	0.11	0.20	39.00	0.20	0.15	0.16	1478
C1-24	76.89	37.50	0.18	0.18	20.00	0.21	0.14	0.30	3166
C1-3	66.29	48.50	0.06	0.21	48.50	0.21	0.12	0.20	1834
C1-4	88.39	67.00	0.10	0.20	67.00	0.20	0.14	0.19	1430
C1-5	56.46	30.00	0.07	0.21	25.00	0.22	0.10	0.12	3523
C1-6	66.50	37.50	0.06	0.21	34.50	0.21	0.12	0.16	1637
C1-7	77.00	43.36	0.06	0.22	40.36	0.22	0.11	0.19	2760
C1-8	58.80	42.00	0.09	0.20	42.00	0.20	0.14	0.20	1624
C1-9	74.70	47.49	0.14	0.19	36.99	0.20	0.14	0.32	1249
C2 A-1	79.46	48.39	0.11	0.19	33.39	0.20	0.14	0.19	2189
C2 A-2	94.43	67.00	0.15	0.19	53.50	0.20	0.15	0.21	2045
C2 A-3	90.19	61.21	0.10	0.20	45.21	0.22	0.11	0.17	2931
C2 A-4	71.69	43.50	0.13	0.20	40.50	0.21	0.13	0.15	2245
C2 A-5	84.61	65.00	0.15	0.19	58.00	0.19	0.15	0.17	1101
C2 A-6	78.23	61.00	0.06	0.21	53.00	0.21	0.11	0.16	2259
C2 A-7	79.53	49.00	0.15	0.18	19.00	0.20	0.14	0.28	2382
C2 A-8	58.84	39.00	0.11	0.19	29.00	0.20	0.13	0.16	2630
C2 A-9	73.18	44.36	0.03	0.20	39.36	0.21	0.13	0.18	1202
C2 B-2	94.60	51.50	0.10	0.20	47.00	0.20	0.14	0.18	1730
C2 B-4	81.59	43.22	0.12	0.19	40.72	0.19	0.15	0.19	1178
C2 B-5	66.70	41.04	0.12	0.20	41.04	0.20	0.14	0.18	1821
C2 B-6	95.97	71.28	0.05	0.21	71.28	0.21	0.12	0.14	2440
C2 B-7	89.94	45.00	0.09	0.22	10.00	0.19	0.11	0.21	695
C2 BC-2	67.89	56.00	0.09	0.21	51.50	0.21	0.12	0.14	2012
C2 BC-3	92.12	69.50	0.10	0.20	58.50	0.21	0.13	0.17	2037
C2 BC-4	72.32	47.00	0.13	0.19	40.00	0.20	0.13	0.17	2169
C2 BC-5	74.06	31.50	0.01	0.21	24.00	0.22	0.10	0.11	2795
C2 BC-6	69.98	48.83	0.13	0.20	48.83	0.20	0.14	0.29	1663
C2 BC-7	71.37	58.50	0.11	0.20	55.50	0.20	0.14	0.31	1318
C2 BC-8	68.10	47.50	0.07	0.21	46.50	0.21	0.12	0.13	2302
C2-2	78.79	63.00	0.10	0.20	49.50	0.21	0.13	0.18	1669
C2-3	88.49	77.00	0.06	0.21	71.50	0.21	0.11	0.13	1963
C2-4	85.59	68.00	0.10	0.20	61.50	0.20	0.13	0.19	1991
C2-5	61.09	44.00	0.09	0.21	31.00	0.21	0.12	0.27	2498
Promedio	74.50	48.71	0.10	0.20	41.53	0.20	0.13	0.20	1920.09

Anexo 2. Curvas calculadas y puntos de control de núcleo

Pozo C2 A-3

Pozo C1 B-1

GR	Depth	Density-Neutron	Resistivity	VCL	Porosity	Sw Irr	Permeability	Net Pay
CALI(HSI)	MD	PEF(SNP2)	RT(AFRD)	VCL	Core_Por	Core_UD1	Core_Kmax	<netpay></netpay>
7 in 1	6	10 NONE 10	0.200 ohmm 2000.000	-0.2 1.20	V/V 0.3	0.2 V/V 1.	20.001 Md 10000.000-	0.2 1.2
GR_norm		RHOB_norm		VSH	PHIA	SwMS	Perm	
0 api 30	D	1.9 g/cc 2.9		-0.2 1.20	0.3	-0.2 1.	20.001 10000.000	OI
GR(SGRC_SP)		PHIN_norm		Core_ClayPercent(N/A)	PHIE	Swirr		
0 api 30	D	0.45 v/v -0.15		-0.2 1.20	0.3	-0.2 1.	2	
GR Yellow Green>		RHOB(SBD2)		LimVSH(N/A)		Lt Blue		
		1.9 g/cc 2.9		-0.2 1.2				
		PHIN(TNPS)						
		0.45 v/v -0.15						
		Lt. Blue						
		Yellow						
\sim	10066 10068 10070	\geq 1	3		25	\leq	\geq	
5	10072 10074 10076	22 11	}	S	2.5	5	7 .	
2	10078 10080		Ę	Carrier B	5.3			
>	10082 10084		٤ ٤	32	. 5 5	3	. 2.	
Č	10086	50000	1	State of the second sec	5-2	8-2		
	10090	33	{	Card and a second	25	3	- Comp	
	10094	1 6 5	2	2		5	~~~~	-
>	10098	22	2			2		
K 2	10102 10104	38	>	8	5	2	.3	
2	10106 10108	82 5	5	2		3		-
\mathcal{C}	10110 10112	2	5			2		
	10114 10116	SR {	~			2		
	10118	8			4	A	ζ.	
2	10122	533	5	32	33	32	. 5	
	10126		~	and the second		2		
1	10130		2		- I	5	2	
N.	10134		5-2	2 A	2	2	2	
6	10138	A	2	2-S		X	The second	
25	10142	32	5	2		.5		100 C

Pozo C1-24

GR Depth Density-Neutron Resistivity VCL Porosity Sw Irr F	Permeability	Net Pay
CALI(ALHSI) MD PEF(ALPELC) RT(AFRDC) VCL Core Por Core UD1 (Core Kmax	<netpay></netpay>
7 in 16 10 NONE 10,200 etimm 2000,000-0,2 1,20 V/V 0,3-0,2 V/V 1,20,001	Md 10000.000-0.2	1.2
GR. norm RHOB_norm VSH PHIA SwMS	Perm	-
0 api 300 1.9 g/cc 2.9 0.2 1.20 0.3-0.2 1.20 001	10000.000	
GR(DGRCC) PHIN. norm Core_ClayPercent PHIE Swfrr		
0 api 300 0.45 v/v 0.15 0.2 Percent 1.20 0.3.0.2 1.2		
RHOB(ALCDLC) LimVSH(N/A)		
4GR Yellow Green> 1.9 gloc 2.9 0.2 1.2 Lt Blue		
PHIN(TNPS)		
0.45 v/v -0.15		
LL Blue		
Yellow		
	2	
	~	
	3	
	>	
	~	
	. 2	
	•	
	2	
	>	
	2	
	Service .	
	5	
	- 2	

Pozo C2 B-2

GR		Depth	Density-Neutron		Resistivity			VCL	Porosity		Sw Irr		Permeabilit	ty	Net Pay
CALI(HSI)		MD	PEF(SNP2)		RT(AFRD)			VCL	Core_Por		Core_UD1		Core_Kma	x	<netpay></netpay>
7 in	16	10	b/e	10.200	ohmm	2000.000	0.2	1.20	VIV	0.3-0.2	V/V	1.20.001	Md	10000.000-0	0.2 1.2
GR_norm			RHOB_norm					VSH	PHIA		SwMS		Perm		
0 api	300	1.5	9 g/cc 2	.9			-0.2	1.20		0.3-0.2		1.20.001		10000.000	OII
GR(SGRC)			PHIN_norm				Core_Cla	yPercent(N/A)	PHIE		Swirr	— I.			
0 api	300	0.4	45 v/v -0.1	15			-0.2	1.20		0.3-0.2		1.2			
CP Vollow Grocos			RHOB(SBD2)				Lim	VSH(N/A)			Lt Plue				
SGR Fellow Greens		1.6	g/cc 2	.9			-0.2	1.2			LL Dile				
			PHIN(TNPS)												
		0.4	45 v/v -0.1	15											
			La Diva												
			ILL BIDE												
			Valan												
			1000												
E.		10434	1-2-	2	2		3	51	2 2		5	~			
24		10438	5 53		5		<	S	2 2		5		2 .		
125		10442	(5		E		5	5	2 >		2	-			
22		10446	23		5		3	2	2 >		2	~	297		
551		10448	15		5		5	5	22		2	_	2		
12 3		10452 10454	18		\$		J.	<u> </u>	3 {		5 3		~		
N.S.		10456 10458	23	8	2		7	2	55		25	0	-3-		
25		10460	53		3			53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3		-2		
\mathcal{Q}		10464	2		5		1	come.	- 5 5		23				
		10468	L S	6	2				2 2			-			Contraction of the local division of the loc
SS 2		10470	8 3			5	3		. 5		1			.1	
C.		104/4 10476	5		-	_	de la		A start and a start a				-		
		10478 10480	5>5	6		3	-					-			
		10482	25		E	5	E				0				
2		10486	23		<	-	~	3			>				
\$ <u>}</u>		10490	a			3	8		5		E			5.	
		10494	\diamond		2		-	2-22	\leq		3		0		
\sim		10498	8		<	-	5	>	The second secon		2			2.	
C C C		10500	\$			5	126				2			.3	
{ \$ }		10504 10506	Y S			3	15		1		2			S.	
27		10508				2	17	7	53		1			2	
S.		10512	1 A			5	3		~S}		1			S.	
<pre>C</pre>		10516	4			_	16		5		(5	
33		10520	8			5	2	2			2			5	
		10522) 5		-	5	5	-	. 32		<		2.		

Anexo 3. Listados de pozos con registros y análisis de núcleo

Well	Rayos Gamma (GR)	Densidad (DEN)	Porosidad Neutron (NEU)	Resistividad tipo laterolog (RES)	Analisis de nucleo
C1 B-1	x	х	х	x	х
C1 B-2	х	х	х	х	
C1-10	х	х	х	х	
C1-11	х	х	х	х	
C1-12	х	х	х	х	
C1-13	х	х	х	х	
C1-17	х	х	х	х	
C1-2	х	х	х	х	
C1-20	х	х	х	х	
C1-21	х	х	х	х	
C1-22	х	х	х	х	
C1-24	х	х	х	х	х
C1-3	х	х	х	х	
C1-4	х	х	х	х	
C1-5	х	х	х	х	
C1-6	х	х	х	х	
C1-7	х	х	х	х	
C1-8	х	х	х	х	
C1-9	х	х	х	х	
C2 A-1	х	х	х	х	
C2 A-2	х	х	х	х	
C2 A-3	х	х	х	х	х
C2 A-4	х	х	х	х	
C2 A-5	х	х	х	x	
C2 A-6	х	х	х	x	
C2 A-7	х	х	х	х	
C2 A-8	х	х	х	х	
C2 A-9	х	х	х	х	
C2 B-2	х	х	х	х	х
C2 B-4	х	х	х	х	
C2 B-5	х	х	х	х	
C2 B-6	х	х	х	х	
C2 B-7	х	х	х	х	
C2 BC-2	х	х	х	х	
C2 BC-3	х	х	х	х	
C2 BC-4	х	х	х	х	
C2 BC-5	х	х	х	х	
C2 BC-6	х	х	х	х	
C2 BC-7	х	х	Х	х	
C2 BC-8	х	х	Х	х	
C2-2	х	х	Х	х	
C2-3	х	х	Х	х	
C2-4	х	х	Х	х	
C2-5	x	х	x	x	

Anexo 4. Análisis de XRD

Quartz	2.62
K-Feldspar	2.56
Plagioclase	2.62
Calcite	2.71
Siderite	3.96
Dolomite	2.84
Ankerite	3.05
Aragonite	2.93
Kaolinite	2.60
Chlorite	2.65
Berthierine	3.03
Biotite	3.09
Illite	2.75
Montmorillonite	2.01
Pyrite	5.01
Magnetite	5.15
Anatase	3.90
Marcasite	4.89
Sphalerite	4.05
Barite	4.48
Gypsum	2.30
Anhydrite	2.97
Analcime	2.30
Ilmenite	4.72
Zircon	4.65
Dawsonite	2.42

Density

Mineral phase

Fuente:https://www.webmineral.com/Nota. Resumen de Vclay convertidos a v/v de los análisis XRD

Nucleo	pozo C1-24		Wh	ole Rock	Mineralog	y (Weigh	Clay (Phyllosilicate) Mineralogy (Weight % in b						
Sample ID	Depth core (ft)	Quartz	K- Feldspar	Calcite	Anhydrite	Siderite	Anatase	Dawsonit e	lllite/Smect. (I/S)	Illite & Mica	Kaolinite	Berthierine/ Fe-Chlorite	"Smectite in I/S
18AH	10515.10	79.92	0.32	0.00	0.00	0.00	0.28	0.00	0.50	1.41	17.57	0.00	20.00
19AH	10516.70	69.47	0.44	0.00	0.14	12.86	0.41	0.00	0.00	2.33	14.35	0.00	0.00
20AH	10516.90	73.52	0.25	0.00	0.00	7.34	0.16	0.00	0.49	2.46	15.77	0.00	20.00
22AH	10520.50	80.86	0.26	0.00	0.00	0.00	0.22	0.00	0.00	1.72	16.94	0.00	0.00
24AH	10522.50	77. 9 2	0.46	0.00	0.00	0.00	0.25	0.00	1.15	1.95	18.26	0.00	20.00
50AH	10554.35	78.84	0.25	0.00	0.00	0.00	0.24	0.00	0.66	1.46	18.55	0.00	20.00
59AH	10562.80	86.28	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.79	9.38	3.28	0.00
60AH	10563.20	91.11	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.80	5.72	1.99	0.00
65AH	10566.45	93.34	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.42	4.46	1.56	0.00
68AH	10568.25	97.78	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.27	1.13	0.64	0.00
69AH	10569.15	86.04	0.19	0.00	0.00	0.00	0.29	0.00	0.00	0.10	8.09	5.30	0.00
71AH	10571.85	9 5.55	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.08	3.36	0.82	0.00
72AH	10572.60	67.51	0.32	0.00	0.00	0.00	0.24	0.00	1.49	3.12	21.57	5.61	20.00
74AH	10574.15	90.73	0.20	0.00	0.00	0.00	0.12	0.00	0.00	1.14	7.32	0.50	0.00

Nucleo pozo C1- 24		V	Whole Roc	k Mineralog	Clay (Phy	Total vol (cm3)						
Sample ID	Quartz	K- Feldspar	Calcite	Anhydrite	Siderite	Anatase	Dawsonite	lllite/Smect . (I/S)	llite & Mica	Kaolinite	Berthierine /Fe- Chlorite	
18AH	30.50	0.12	0.00	0.00	0.00	0.07	0.00	0.20	0.51	6.76	0.00	38.17
19AH	26.52	0.17	0.00	0.05	3.25	0.10	0.00	0.00	0.85	5.52	0.00	36.45
20AH	28.06	0.10	0.00	0.00	1.85	0.04	0.00	0.19	0.90	6.07	0.00	37.21
22AH	30.86	0.10	0.00	0.00	0.00	0.06	0.00	0.00	0.62	6.52	0.00	38.16
24AH	29.74	0.18	0.00	0.00	0.00	0.06	0.00	0.45	0.71	7.02	0.00	38.17
50AH	30.09	0.10	0.00	0.00	0.00	0.06	0.00	0.26	0.53	7.14	0.00	38.17
59AH	32.93	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.29	3.61	1.16	38.05
60AH	34.78	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.29	2.20	0.70	38.08
65AH	35.63	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.15	1.71	0.55	38.10
68AH	37.32	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.43	0.23	38.14
69AH	32.84	0.08	0.00	0.00	0.00	0.07	0.00	0.00	0.03	3.11	1.86	38.00
71AH	36.47	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.03	1.29	0.29	38.12
72AH	25.77	0.12	0.00	0.00	0.00	0.06	0.00	0.58	1.13	8.30	1.97	37.94
74AH	34.63	0.08	0.00	0.00	0.00	0.03	0.00	0.00	0.41	2.81	0.17	38.14

Nucleo pozo C1- 24	Whole Rock Mineralogy (vol v/v)								yllosilica v	te) Minera /v)	logy (vol	Total vol (cm3)	Total Clay vol (v/v)	Total Clay (%w)
Sample ID	Quartz	K- Feldspar	Calcite	Anhydrite	Siderite	Anatase	Dawsonit e	Illite/Sme ct. (I/S)	Illite & Mica	Kaolinite	Berthierin e/Fe- Chlorite			
18AH	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.18	0.00	1.00	0.20	19.48
19AH	0.73	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.02	0.15	0.00	1.00	0.17	16.68
20AH	0.75	0.00	0.00	0.00	0.05	0.00	0.00	0.01	0.02	0.16	0.00	1.00	0.19	18.72
22AH	0.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.17	0.00	1.00	0.19	18.66
24AH	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.18	0.00	1.00	0.21	21.36
50AH	0.79	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.19	0.00	1.00	0.21	20.67
59AH	0.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.09	0.03	1.00	0.13	13.46
60AH	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.06	0.02	1.00	0.08	8.51
65AH	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	1.00	0.06	6.43
68AH	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	1.00	0.02	2.04
69AH	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.05	1.00	0.13	13.48
71AH	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	1.00	0.04	4.26
72AH	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.22	0.05	1.00	0.32	31.86
74AH	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.00	1.00	0.09	8.95

Nucleo p	oozo C2 A-3	3 Whole Rock Mineralogy (Weight %)													
Sample ID	Depth (ft)	Quartz	K Feldspar	Calcite	Fe Dolomit e	Pyrite	Marcasit e	Sphalerit e	Barite	Gypsum	Zeolite (analcim e)	Anatase	llmenite	Zircon	Daws onite
106X	10620.45	80.11	0.20	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00
101X	10623.35	74.30	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00
92X	10632.25	83.12	0.19	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91X	10632.50	85.09	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7 9 X	10641.85	89.96	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76X	10644.65	95.64	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65X	10652.55	99.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62X	10655.65	96.79	0.31	0.00	0.00	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61X	10656.55	95.98	0.31	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57X	10660.40	77.57	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00
52X	10665.30	93.26	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51SX	10666.45	90.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00
48X	10668.10	92.70	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45X	10671.75	95.49	0.24	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37X	10677.40	96.84	0.24	0.00	0.00	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31X	10682.10	97.74	0.19	0.00	0.00	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26X	10686.20	97.59	0.23	0.00	0.00	0.73	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23X	10688.80	95.48	0.31	0.00	0.00	0.64	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22X	10689.45	90.18	0.30	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20X	10691.55	97.12	0.17	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14X	10696.65	96.2 7	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11X	10700.90	7 6 .58	0.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.00	0.00	0.00
10X	10703.10	94.96	0.31	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6X	10705.60	97.15	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5X	10706.85	95.40	0.23	0.00	0.00	1.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Nucleo pozo C2 A-3	Clay (Phyllosilicate) Mineralogy (Weight % in bulk)											
Sample ID	Illite/Smect . (I/S)	Illite & Mica	Kaolinite	Fe0Chlorit e	Smectite in I/S							
106X	0.00	2.09	16.48	0.67	0.00							
101X	0.48	2.64	20.19	1.72	25.00							
92X	0.00	1.65	14.49	0.25	0.00							
91X	0.00	0.85	13.35	0.43	0.00							
7 9 X	0.00	0.74	8.02	0.68	0.00							
76X	0.15	0.55	2.54	0.62	20.00							
65X	0.00	0.20	0.58	0.12	25.00							
62X	0.00	0.25	1.63	0.11	25.00							
61X	0.15	0.23	2.64	0.10	10.00							
57X	0.89	2.05	18.13	0.76	25.00							
52X	0.43	0.94	4.79	0.42	25.00							
51SX	0.57	0.98	7.12	0.38	25.00							
48X	0.51	0.43	5.64	0.44	25.00							
45X	0.41	0.54	2.91	0.21	20.00							
37X	0.16	0.20	2.11	0.17	20.00							
31X	0.00	0.36	0.81	0.12	0.00							
26X	0.00	0.22	0.97	0.00	0.00							
23X	0.00	0.14	2.96	0.23	20.00							
22X	0.00	0.00	9.05	0.31	20.00							
20X	0.00	0.00	2.43	0.14	20.00							
14X	0.20	0.36	2.59	0.26	20.00							

11X

10X

6X

5X

0.42

0.00

0.00

0.00

0.34

0.37

0.38

0.41

19.62 2.09

0.24

0.00

0.20

3.95

2.17

2.15

20.00

0.00

0.00

0.00

Nucleo pozo C2 A-3						Whole F	Rock Min	eralogy	(vol.cm3	1)				
Sample ID	Quartz	K Feldspar	Calcite	Fe Dolomit e	Pyrite	Marcasi te	Sphalerit e	Barite	Gypsum	Zeolite (analcim e)	Anatase	llmenite	Zircon	Dawsonit e
106X	30.58	0.08	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
101X	28.36	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00
92X	31.72	0.07	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91X	32.48	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79X	34.34	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76X	36.50	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65X	37.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62X	36.94	0.12	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61X	36.63	0.12	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57X	29.61	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
52X	35.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51SX	34.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
48X	35.38	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45X	36.45	0.09	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37X	36.96	0.09	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31X	37.30	0.08	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26X	37.25	0.09	0.00	0.00	0.15	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23X	36.44	0.12	0.00	0.00	0.13	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22X	34.42	0.12	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20X	37.07	0.06	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14X	36.74	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11X	29.23	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00
10X	36.24	0.12	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6X	37.08	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5X	36.41	0.09	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Nucleo pozo C2 A-3	Clay (Ph	yllosilica cr	ite) Mineral m3)	logy (vol	Total vol (cm3)
Sample ID	Illite/Smec t. (I/S)	Illite & Mica	Kaolinite	Fe Chlorite	•
106X	0.00	0.76	6.34	0.25	38.08
101X	0.19	0.96	7.76	0.65	38.16
92X	0.00	0.60	5.57	0.09	38.11
91X	0.00	0.31	5.13	0.16	38.16
79X	0.00	0.27	3.08	0.26	38.05
76X	0.06	0.20	0.98	0.23	38.07
65X	0.00	0.07	0.22	0.05	38.14
62X	0.00	0.09	0.63	0.04	37.99
61X	0.06	0.08	1.01	0.04	38.06
57X	0.35	0.74	6.97	0.29	38.17
52X	0.17	0.34	1.84	0.16	38.10
51SX	0.23	0.36	2.74	0.14	38.16
48X	0.20	0.15	2.17	0.16	38.19
45X	0.16	0.19	1.12	0.08	38.13
37X	0.06	0.07	0.81	0.06	38.12
31X	0.00	0.13	0.31	0.05	38.02
26X	0.00	0.08	0.37	0.00	37.99
23X	0.00	0.05	1.14	0.09	38.00
22X	0.00	0.00	3.48	0.12	38.17
20X	0.00	0.00	0.94	0.05	38.15
14X	0.08	0.13	1.00	0.10	38.12
11X	0.16	0.12	7.55	0.79	38.15
10X	0.00	0.14	1.52	0.09	38.14
6X	0.00	0.14	0.83	0.00	38.15
5X	0.00	0.15	0.83	0.07	37.88

Nucleo pozo C2 A-3						Whole I	Rock Min	eralogy	(vol cm3)					
Sample ID	Quartz	K Feldspar	Calcite	Fe Dolomite	Pyrite	Marcasit e	Sphalerit e	Barite	Gypsum	Zeolite (analcim e)	Anatase	llmenite	Zircon	Dawsonit e
106X	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
101X	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
92X	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91X	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79X	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76X	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65X	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62X	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61X	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57X	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52X	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51SX	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
48X	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45X	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37X	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31X	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26X	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23X	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22X	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20X	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14X	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11X	0.77	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10X	0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6X	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5X	0.96	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Nucleo pozo C2 A-3	Clay (Pł	nyllosilica c	ate) Minera m3)	Total vol (cm3)	Total Clay vol (v/v)	Total Clay (%w)	
Sample ID	Illite/Smec t. (I/S)	lllite & Mica	Kaolinite	Fe Chlorite			
106X	0.00	0.02	0.17	0.01	1.00	0.19	19.24
101X	0.00	0.03	0.20	0.02	1.00	0.25	25.03
92X	0.00	0.02	0.15	0.00	1.00	0.16	16.38
91X	0.00	0.01	0.13	0.00	1.00	0.15	14.63
79X	0.00	0.01	0.08	0.01	1.00	0.09	9.43
76X	0.00	0.01	0.03	0.01	1.00	0.04	3.87
65X	0.00	0.00	0.01	0.00	1.00	0.01	0.98
62X	0.00	0.00	0.02	0.00	1.00	0.02	2.05
61X	0.00	0.00	0.03	0.00	1.00	0.03	3.11
57X	0.01	0.02	0.18	0.01	1.00	0.22	21.82
52X	0.00	0.01	0.05	0.00	1.00	0.07	6.57
51SX	0.01	0.01	0.07	0.00	1.00	0.09	9.05
48X	0.01	0.00	0.06	0.00	1.00	0.07	7.01
45X	0.00	0.01	0.03	0.00	1.00	0.04	4.06
37X	0.00	0.00	0.02	0.00	1.00	0.03	2.64
31X	0.00	0.00	0.01	0.00	1.00	0.01	1.29
26X	0.00	0.00	0.01	0.00	1.00	0.01	1.19
23X	0.00	0.00	0.03	0.00	1.00	0.03	3.43
22X	0.00	0.00	0.09	0.00	1.00	0.09	9.36
20X	0.00	0.00	0.02	0.00	1.00	0.03	2.57
14X	0.00	0.00	0.03	0.00	1.00	0.03	3.40
11X	0.00	0.00	0.20	0.02	1.00	0.23	22.47
10X	0.00	0.00	0.04	0.00	1.00	0.05	4.56
6X	0.00	0.00	0.02	0.00	1.00	0.03	2.55
5X	0.00	0.00	0.02	0.00	1.00	0.03	2.76

Anexo 5. Análisis básicos de núcleo

Nucleo pozo C1 B-1

Sample ID	De pth c ore (ft)	Depth log (ft)	Net Confining Stress (psig)	Porosity (v/v)	Perm Klinkenberg (mD)	Permair (mD)	So pore volume (v/v)	Swpore volume (v/v)	Grain Density (g/cm3)
10.00	10061	10060	3951	0.015	0.001	0.004	0.000	0.856	2.64
11.0	10064	10063	3951	0.013	0.018	0.033	0.000	0.919	2.64
12.0	10067	10067	3951	0.111	0.059	0.141	0.000	0.855	2.64
13.0	10069	10068	3951	0.053	0.002	0.010	0.000	0.771	2.61
15.0	10076	10076	3951	0.082	0.063	0.106	0.000	0.669	2.64
16.0	10079	10079	3951	0.107	0.027	0.049	0.000	0.926	2.64
17.0	10081	10080	3951	0.131	11.6	13.0	0.278	0.392	2.65
18.0	10083	10082	3951	0.099	1.14	1.41	0.198	0.614	2.64
19.0	10084	10083	3951	0.045	0.003	0.014	0.000	0.724	2.62
21.0	10086	10086	3951	0.051	0.005	0.022	0.000	0.661	2.62
22.0	10089	10088	3951	0.229	608	638	0.410	0.287	2.64
23.0	10090	10089	3951	0.197	404	425	0.452	0.325	2.65
25.0	10092	10091	3951	0.184	120	130	0.411	0.366	2.64
26.0	10093	10092	3951	0.212	280	290	0.483	0.309	2.64
27.0	10094	10093	3951	0.232	533	550	0.506	0.267	2.64
28.0	10095	10094	3951	0.137	24.8	27.4	0.357	0.410	2.64
29.0	10096	10095	3951	0.255	975	1021	0.445	0.189	2.64
31.0	10099	10098	3951	0.216	326	339	0.431	0.372	2.64
33.0	10103	10102	3951	0.239	529	543	0.523	0.229	2.64
34.0	10105	10104	3951	0.251	936	980	0.500	0.294	2.65
35.0	10106	10105	3951	0.223	358	372	0.442	0.319	2.64
36.0	10108	10107	3951	0.239	687	721	0.493	0.372	2.64
37.0	10112	10111	3951	0.240	1254	1294	0.448	0.317	2.64
39.0	10116	10115	3951	0.214	596	625	0.456	0.308	2.64
40.0	10117	10116	3951	0.207	595	624	0.481	0.289	2.64
41.0	10118	10117	3951	0.205	780	790	0.478	0.296	2.65
42.0	10118	10118	3951	0.200	743	779	0.467	0.337	2.64
43.0	10121	10120	3951	0.196	2263	2353	0.316	0.477	2.64
44.0	10121	10121	3951	0.255	11989	12089	0.528	0.307	2.64
45.0	10123	10122	3951	0.152	2.47	3.25	0.170	0.597	2.65
47.0	10127	10127	3951	0.225	895	938	0.307	0.566	2.64
48.0	10130	10129	3951	0.242	3784	3903	0.468	0.316	2.64
50.0	10132	10131	3951	0.235	3752	3871	0.434	0.374	2.64
51.0	10133	10132	3951	0.250	5717	5839	0.458	0.376	2.64
52.0	10135	10134	3951	0.252	12048	12148	0.472	0.367	2.63
53.0	10136	10136	3951	0.213	3776	3894	0.347	0.407	2.64
54.0	10138	10137	3951	0.248	1487	1506	0.430	0.300	2.64
55.0	10139	10139	3951	0.231	268	283	0.422	0.382	2.64
56.0	10141	10140	3951	0.253	654	681	0.459	0.196	2.64
57.0	10142	10142	3951	0.235	9194	9230	0.498	0.313	2.63
58.0	10143	10142	3951	0.228	8989	9032	0.500	0.297	2.63
60.0	10149	10149	3951	0.114	0.046	0.086	0.030	0.900	2.64
61.0	10151	10151	3951	0.115	0.260	0.399	0.000	0.831	2.65
62.0	10153	10154	3951	0.076	0.036	0.102	0.000	0.784	2.63

Nucleo pozo (CI-24
---------------	-------

					Porm				
Sample ID	Depth core (ft)	$Depth\log(ft)$	Net Confining Stress (psig)	Porosity (v/v)	Klinkenberg (mD)	Permair (mD)	So pore volume (v/v)	Swpore volume (v/v)	Grain Density (g/cm3)
12H	10504	10505	4000	0.070	0.002	0.008	0.057	0.694	2.66
13H	10508	10508	4000	0.135	0.524	0.868	0.089	0.729	2.64
15H	10510	10510	4000	0.146	1.62	2.36	0.176	0.517	2.63
16H	10511	10511	4000	0.131	1.54	2.15	0.050	0.759	2.64
17H	10513	10513	4000	0.100	0.058	0.123	0.149	0.834	2.64
18H	10515	10515	4000	0.154	3.50	4.66	0.225	0.461	2.64
21H	10519	10519	4000	0.086	0.044	0.087	0.162	0.758	2.64
22H	10521	10521	4000	0.172	55.1	62.4	0.317	0.367	2.63
23H	10522	10522	4000	0.144	7.52	9.31	0.237	0.553	2.63
24H	10522	10522	4000	0.115	1.21	1.76	0.113	0.712	2.64
25H	10523	10523	4000	0.116	0.788	1.22	0.099	0.691	2.63
32H	10532	10532	4000	0.143	5.03	6.52	0.189	0.507	2.63
34H	10534	10533	4000	0.126	0.808	1.31	0.043	0.816	2.64
35H	10536	10535	4000	0.012	0.000	0.002	0.013	0.987	2.98
36H	10536	10536	4000	0.049	0.000	0.003	0.038	0.776	2.62
39H	10541	10541	4000	0.077	0.004	0.017	0.009	0.944	2.64
40H	10542	10541	4000	0.121	0.089	0.165	0.018	0.811	2.63
47H	10551	10551	4000	0.122	0.185	0.366	0.000	0.877	2.63
50H	10555	10554	4000	0.101	0.063	0.135	0.001	0.829	2.63
51H	10557	10556	4000	0.143	2.18	2.96	0.155	0.633	2.63
53H	10559	10558	4000	0.218	239	261	0.337	0.373	2.63
55H	10561	10560	4000	0.167	4.76	6.11	0.178	0.602	2.67
56H	10561	10561	4000	0.243	862	903	0.353	0.274	2.64
58H	10562	10562	4000	0.203	123	139	0.316	0.494	2.64
59H	10563	10562	4000	0.244	915	959	0.388	0.308	2.64
60H	10563	10563	4000	0.243	402	422	0.496	0.216	2.63
61H	10564	10563	4000	0.214	161	174	0.330	0.400	2.63
62H	10564	10564	4000	0.195	121	133	0.333	0.415	2.64
63H	10565	10565	4000	0.202	186	209	0.363	0.347	2.63
64H	10566	10565	4000	0.264	4132	4254	0.460	0.167	2.63
65H	10566	10566	4000	0.254	2074	2159	0.473	0.225	2.63
66H	10567	10566	4000	0.215	1472	1537	0.448	0.227	2.63
67H	10567	10567	4000	0.226	1829	1906	0.422	0.194	2.63
68H	10568	10569	4000	0.282	9608	9626	0.513	0.190	2.63
69H	10569	10570	4000	0.207	259	272	0.401	0.429	2.64
72H	10572	10573	4000	0.128	0.456	0.745	0.056	0.821	2.64
74H	10575	10575	4000	0.243	1829	1906	0.449	0.268	2.63
78H	10578	10579	4000	0.003	0.000	0.002	0.006	0.979	2.74
85H	10591	10591	4000	0.029	0.001	0.004	0.032	0.924	2.53
87H	10593	10594	4000	0.088	0.030	0.145	0.015	0.901	2.65

Nucleo pozo C2 B-2

Sample ID	Depth core (ft)	Depth log (ft)	Net Confining Stress (psig)	Porosity (v/v)	Perm Klinkenberg (mD)	Permair (mD)	Sopore volume (v/v)	Swpore volume (v/v)	Grain Density (g/cm3)
1.00	10422	10423	4256	0.048	0.001	0.004	0.000	0.775	2.65
2.00	10434	10435	4256	0.064	0.003	0.015	0.194	0.474	2.64
3.00	10437	10438	4256	0.102	0.285	0.411	0.146	0.692	2.73
5.00	10464	10465	4256	0.104	0.094	0.213	0.000	0.825	2.64
6.00	10469	10469	4256	0.245	3420	3534	0.413	0.192	2.64
7.00	10470	10471	4256	0.229	3509	3625	0.378	0.254	2.64
8.00	10472	10473	4256	0.229	2789	2892	0.409	0.205	2.64
9.00	10473	10474	4256	0.228	2852	2956	0.431	0.211	2.64
10.00	10480	10481	4256	0.140	509	519	0.410	0.124	2.63
11.0	10483	10483	4256	0.190	132	146	0.418	0.267	2.64
12.0	10484	10484	4256	0.201	151	162	0.456	0.209	2.64
15.0	10487	10488	4256	0.193	3009	3117	0.470	0.131	2.64
16.0	10488	10489	4256	0.185	2046	2130	0.469	0.151	2.63
17.0	10490	10490	4256	0.180	2690	2790	0.458	0.158	2.63
18.0	10491	10491	4256	0.187	7383	7478	0.485	0.108	2.63
19.0	10492	10492	4256	0.186	5822	5943	0.434	0.222	2.63
21.0	10496	10496	4256	0.166	1227	1252	0.419	0.183	2.64
22.0	10497	10497	4256	0.185	1973	2019	0.408	0.170	2.64
24.0	10500	10501	4256	0.215	228	244	0.490	0.189	2.64
25.0	10502	10502	4256	0.194	957	970	0.405	0.186	2.64
27.0	10503	10504	4256	0.195	769	782	0.398	0.202	2.65
28.0	10505	10505	4256	0.184	555	571	0.362	0.214	2.64
29.0	10505	10506	4256	0.183	772	780	0.336	0.211	2.64
30.0	10506	10507	4256	0.179	677	691	0.382	0.225	2.64
31.0	10508	10509	4256	0.172	424	436	0.373	0.214	2.64
32.0	10511	10511	4256	0.189	2018	2021	0.422	0.187	2.64
33.0	10512	10512	4256	0.183	1144	1176	0.420	0.198	2.64
34.0	10513	10513	4256	0.194	2074	2080	0.472	0.187	2.64
35.0	10514	10514	4256	0.204	5186	5311	0.466	0.302	2.64
37.0	10517	10517	4256	0.209	3228	3339	0.485	0.417	2.65
38.0	10517	10518	4256	0.203	3029	3137	0.439	0.450	2.65
40.0	10520	10520	4256	0.192	311	326	0.492	0.310	2.65
41.0	10521	10521	4256	0.147	36.9	40.2	0.414	0.241	2.64
42.0	10521	10521	4256	0.111	197	200	0.437	0.303	2.64
43.0	10523	10523	4256	0.094	1.31	1.60	0.257	0.247	2.64
44.0	10524	10524	4256	0.076	13.1	13.9	0.114	0.470	2.65
46.0	10533	10533	4256	0.117	0.219	0.394	0.026	0.819	2.65
47.0	10535	10535	4256	0.221	6.14	8.05	0.136	0.674	2.69
48.0	10536	10536	4256	0.234	4.96	6.94	0.098	0.714	2.66
49.0	10539	10539	4256	0.227	28.7	32.8	0.285	0.486	2.66
50.0	10540	10540	4256	0.206	15.8	17.7	0.244	0.485	2.65
51.0	10557	10558	4256	0.194	1.49	2.14	0.018	0.906	2.65
52.0	10577	10578	4256	0.084	0.314	0.414	0.193	0.251	2.65
53.0	10579	10580	4256	0.169	19.0	20.7	0.222	0.218	2.71
54.0	10581	10582	4256	0.157	24.6	27.8	0.164	0.342	2.65
55.0	10583	10584	4256	0.139	5.82	7.31	0.161	0.472	2.64
56.0	10585	10586	4256	0.204	3537	3653	0.216	0.367	2.64

Nucleo pozo C2 A-3

$:\mathbb{D}$	Depth core (ft)	Depth log (ft)	Net Confining Stress (psig)	Porosity (v/v)	Perm Klinkenberg (mD)	Permair (mD)	So pore volume (v/v)	Swpore volume (v/v)	Grain Density (g/cm3)
119	10603	10598	4170	0.025	0.001	0.002	0.060	0.378	2.57
116	10607	10601	4170	0.117	0.695	0.874	0.067	0.632	2.64
109	10617	10611	4170	0.129	28.8	30.5	0.100	0.347	2.64
107	10619	10614	4170	0.147	12.0	13.0	0.240	0.252	2.65
106	10621	10615	4170	0.148	8.97	9.80	0.294	0.226	2.65
104	10621	10616	4170	0.123	1.23	1.49	0.039	0.543	2.64
102	10623	10617	4170	0.124	1.18	1.44	0.051	0.404	2.64
101	10623	10618	4170	0.125	0.949	1.17	0.068	0.209	2.65
100.0	10624	10618	4170	0.119	0.485	0.630	0.135	0.387	2.64
99.0	10625	10619	4170	0.161	12.8	13.9	0.278	0.130	2.65
97.0	10627	10621	4170	0.154	4.39	5.27	0.167	0.110	2.64
96.0	10628	10623	4170	0.176	20.4	23.9	0.289	0.146	2.66
95.0	10629	10624	4170	0.136	1.74	2.28	0.104	0.414	2.63
94.0	10629	10624	4170	0.173	34.8	38.7	0.404	0.146	2.64
93.0	10631	10626	4170	0.172	13.5	15.6	0.368	0.072	2.64
92.0	10632	10627	4170	0.159	10.1	11.5	0.225	0.209	2.64
91.0	10633	10628	4170	0.175	36.6	38.4	0.357	0.191	2.65
90.0	10633	10628	4170	0.177	16.2	17.4	0.264	0.142	2.64
87.0	10635	10630	4170	0.142	3.11	3.56	0.135	0.309	2.65
86.0	10636	10631	4170	0.133	1.07	1.30	0.011	0.324	2.64
85.0	10636	10631	4170	0.157	20.4	21.8	0.242	0.074	2.66
83.0	10638	10633	4170	0.163	10.1	11.0	0.423	0.128	2.64
80.0	10640	10635	4170	0.019	0.005	0.009	0.129	0.604	2.62
76.0	10645	10640	4170	0.203	525	533	0.541	0.050	2.64
75.0	10645	10640	4170	0.237	2331	2349	0.517	0.065	2.65
74.0	10646	10642	4170	0.224	1081	1093	0.498	0.039	2.65
73.0	10648	10643	4170	0.233	3116	3137	0.525	0.046	2.65
69.0	10651	10646	4170	0.234	2498	2556	0.515	0.117	2.65
67.0	10652	10647	4170	0.225	2701	2720	0.467	0.122	2.65
65.0	10653	10648	4170	0.225	4755	4781	0.473	0.084	2.65
63.0	10655	10650	4170	0.223	4036	4059	0.525	0.065	2.64
62.0	10655	10651	4170	0.143	159	163	0.405	0.047	2.64
61.0	10656	10652	4170	0.170	547	555	0.403	0.054	2.64
60.0	10658	10653	4170	0.020	0.002	0.004	0.037	0.471	2.61
58.0	10659	10655	4170	0.044	0.008	0.019	0.117	0.270	2.63
57.0	10661	10656	4170	0.073	0.081	0.127	0.080	0.250	2.63
55.0	10662	10658	4170	0.107	1.10	1.34	0.085	0.119	2.63
54.0	10664	10659	4170	0.100	1.23	1.49	0.090	0.132	2.64
53.0	10665	10660	4170	0.171	677	686	0.513	0.040	2.65
52.0	10665	10661	4170	0.159	293	299	0.451	0.063	2.65
48.0	10668	10664	4170	0.198	1689	1704	0.482	0.106	2.65
47.0	10670	10665	4170	0.171	554	562	0.483	0.052	2.65
46.0	10671	10666	4170	0.222	3674	3697	0.424	0.192	2.65
45.0	10672	10667	4170	0.248	5074	5100	0.487	0.078	2.65
44.0	10673	10668	4170	0.230	2776	2796	0.438	0.132	2.65
42.0	10673	10669	4170	0.216	1477	1491	0.497	0.085	2.66
40.0	10676	10671	4170	0.191	1061	1073	0.471	0.053	2.64

Nuc	cleo pozo	C2 A-3								
	le ID	Depth core (ft)	Depth log (ft)	Net Confining Stress (psig)	Porosity (v/v)	Perm Klinkenberg (mD)	Permair (mD)	So pore volume (v/v)	Swpore volume (v/v)	Grain Density (g/cm3)
	39.0	10676	10672	4170	0.207	2679	2699	0.398	0.140	2.65
	37.0	10677	10673	4170	0.217	4104	4127	0.467	0.167	2.66
	35.0	10679	10675	4170	0.142	16.7	17.9	0.174	0.147	2.63
	33.0	10680	10676	4170	0.213	5018	5045	0.439	0.153	2.65
	31.0	10682	10678	4170	0.204	4365	4389	0.552	0.020	2.66
	30.0	10683	10679	4170	0.218	5478	5506	0.512	0.076	2.66
	28.0	10685	10680	4170	0.229	7341	7375	0.459	0.127	2.65
	27.0	10685	10681	4170	0.225	7126	7158	0.548	0.066	2.67
	26.0	10686	10682	4170	0.232	8159	8195	0.597	0.031	2.66
	25.0	10687	10682	4170	0.236	8316	8353	0.585	0.037	2.65
	23.0	10689	10685	4170	0.165	1097	1108	0.369	0.040	2.65
	22.0	10690	10685	4170	0.118	1.76	2.08	0.027	0.127	2.63
	20.0	10691	10687	4170	0.176	121	125	0.367	0.065	2.65
	18.0	10694	10689	4170	0.200	1306	1319	0.469	0.115	2.65
	16.0	10695	10690	4170	0.205	1625	1639	0.516	0.082	2.64
	15.0	10695	10691	4170	0.208	1487	1501	0.546	0.081	2.65
	14.0	10697	10692	4170	0.212	1933	1949	0.548	0.041	2.65
	13.0	10699	10694	4170	0.104	0.146	0.217	0.023	0.116	2.64
	11.0	10701	10697	4170	0.075	0.031	0.058	0.021	0.215	2.64
	10.00	10703	10699	4170	0.221	9622	9664	0.438	0.097	2.65
	9.00	10704	10700	4170	0.138	1.47	1.77	0.063	0.118	2.65
	6.00	10705	10702	4170	0.199	2588	2607	0.466	0.050	2.65
	5.00	10707	10703	4170	0.173	4514	4540	0.546	0.029	2.65
	4.00	10707	10703	4170	0.161	6.54	7.23	0.032	0.080	2.64

0.017

0.089

0.001

0.045

0.003

0.079

0.023

0.029

0.361

0.213

2.62

2.64

3.00

2.00

10709

10711

10705

10707

4170

4170

Pozo C1-24. Factor de formación e índice de resistividad

C1-24 FORMATION RESISTIVITY FACTOR

Saturant Brine, mg/l :

Resistivity of Saturant Brine, ohm-m @ 25°C :

828

7.00

Sample Number	Sample Depth, feet	Effective Confining Stress, psig	Permeability to Air to Air (800psi NCS) mD	Specific Brine Permeability, mD	Permeability Ratio	Porosity, fraction	Porosity, Ratio	Formation Resistivit y Factor (FRF)	Porosity Exponent (m)
19AH	10516.70	0.00	22.90	-		0.175	1.000	13.38	1.51
		400.00	-	12.62	1.00	0.174	0.992	13.30	1.50
		3500.00	-	9.86	0.781	0.167	0.953	15.45	1.55
		5100.00	-	7.44	0.590	0.166	0.949	15.64	1.55
		6350.00	-	5.73	0.454	0.165	0.944	15.62	1.55
		6800	-	5.2	0.411	0.164	0.939	15.65	1.55
20AH	10516.90	0.0	8.021	-		0.167	1.000	13.47	1.48
		400	-	3.599	1.00	0.165	0.985	13.41	1.46
		3500	-	2.248	0.625	0.158	0.943	15.92	1.52
		5100	-	1.895	0.526	0.156	0.933	16.05	1.52
		6350	-	1.627	0.452	0.155	0.928	16.80	1.54
		6800	-	1.512	0.420	0.154	0.924	16.90	1.54
24AH	10522.50	0.0	0.957	-		0.124	1.000	15.40	1.33
		400	-	0.627	1.00	0.122	0.978	15.97	1.33
		3500	-	0.336	0.536	0.116	0.931	18.91	1.38
		5100	-	0.308	0.491	0.115	0.923	19.56	1.39
		6350	-	0.290	0.462	0.114	0.916	19.77	1.39
		6800	-	0.261	0.416	0.113	0.911	20.36	1.40
65AH	10566.45	0.0	1921.179	-		0.274	1.000	8.68	1.70
		400	-	843.820	1.00	0.268	0.981	9.04	1.70
		3500	-	565.405	0.670	0.262	0.958	9.33	1.70
		5100	-	461.750	0.547	0.259	0.947	9.74	1.71
		6350	-	377.575	0.447	0.256	0.936	10.06	1.72
		6800	-	362.299	0.429	0.256	0.936	10.10	1.73
68AH	10568.25	0.0	6887.863	-		0.284	1.000	7.93	1.70
		400	-	4724.087	1.000	0.281	0.991	7.49	1.64
		3500	-	3293.804	0.697	0.268	0.946	8.22	1.65
		5100	-	2146.168	0.454	0.266	0.939	8.40	1.66
		6350	-	1863.246	0.394	0.265	0.934	8.36	1.65
		6800	-	1765.697	0.374	0.264	0.931	8.43	1.65
74AH	10574.15	0.0	593.942	-		0.236	1.000	10.01	1.64
		400	-	282.765	1.00	0.233	0.988	13.29	1.82
		3500	-	214.621	0.759	0.221	0.936	14.44	1.81
		5100	-	157.885	0.558	0.220	0.932	14.57	1.81
		6350	-	148.418	0.525	0.218	0.926	14.66	1.81
		6800	-	138.800	0.491	0.218	0.923	14.76	1.81

C1-24 CORE/WATER CONDUCTIVITY

Temperature °C:25.0Effective Confining Stress, psig:5100(theoretical) B_{max}:3.83(calculated) B_{actual}:0.870

Sample ID	Depth, ft	Air Permea bility (800 psig NCS) millidarc ies Kair	Porosity, at 5100 psig NCS, fraction	Brine Concentration, ppm Sw	Brine Conductivi ty, mho/m Co	Core Conducti vity, mho/m	Conducti vity Ratio, Co/Cw	BactQv mho/m Cw	Qv meq/ml	uncor rected F	uncor rected m	correc ted F*	correc ted m*		
19AH	10516.700	22.9	0.166	sfw (828 ppm)	0.143	0.009	0.066	0.094	0.108	15.2	1.516	25.2	1.798		
				100,000 ppm	13.605	0.551	0.040								
				250,000 ppm	25.189	1.01	0.040								
				180,000 ppm	20.661	0.823	0.040								
				200,000 ppm	22.523	0.887	0.039								
20AH	10516.900	8.02	0.156	sfw (828 ppm)	0.143	0.009	0.062	0.113	0.129	16.1	1.495	28.7	1.808		
				100,000 ppm	13.605	0.452	0.033								
				250,000 ppm	25.189	0.825	0.033								
				180,000 ppm	20.661	0.662	0.032								
				200,000 ppm	22.523	0.721	0.032								
24AH	10522.500	0.957	0.115	sfw (828 ppm)	0.143	0.007	0.050	0.106	0.122	20.2	1.389	35.2	1.646		
				100,000 ppm	13.605	0.311	0.023								
				250,000 ppm	25.189	0.566	0.022								
				180,000 ppm	20.661	0.461	0.022								
				200,000 ppm	22.523	0.503	0.022								
65AH	10566.450	1921	0.259	sfw (828 ppm)	0.143	0.014	0.100	0.000	0.000	10.0	1.705	10.0	1.705		
				100,000 ppm	13.605	1.09	0.080								
				250,000 ppm	25.189	2.25	0.089								
				180,000 ppm	20.661	1.79	0.087								
				200,000 ppm	22.523	1.99	0.088								
68AH	10568.250	6888	0.266	sfw (828 ppm)	0.143	0.017	0.119	0.066	0.076	8.40	1.608	12.3	1.894		
				100,000 ppm	13.605	1.46	0.107								
				250,000 ppm	25.189	2.67	0.106								
				180,000 ppm	20.661	2.12	0.103								
				200,000 ppm	22.523	2.35	0.104								
74AH	10574.150	594	0.220	sfw (828 ppm)	0.143	0.010	0.069	0.039	0.045	14.5	1.767	18.6	1.928		
				100,000 ppm	13.605	0.944	0.069								
				250,000 ppm	25.189	1.74	0.069								
				180,000 ppm	20.661	1.40	0.068								
				200,000 ppm	22.523	1.53	0.068								
C1-24								Saturant E	Brine, mg/l	:		828			
-------------------------	------------------------------	--------------	--	-----------------------------------	-----------------------	---------------------------	---------------------------	----------------------------	-----------------------------	-------------------------------------	---------------------------	----------------------------------	-----------------------------------	-----------------------------------	--------------
FORMATION RESI	STIVITY INDEX							Resistivity	of Satura	ant Brine, oh	m-m @ 25°C	6.53			
								(calculate	d) Bactual	:		0.870			
								Effective (Confining	Stress, psig:		5100			
								Porosity E	Exponent (m*):		1.86			
								Saturation	Exponen	t (n*) [Comp	osite]:	2.03			
	Plug ID	Depth, ft	Permeabi lity to Air, mD millidarci es	Stressed Porosity, fraction	BactQv mho/m Qv	Formatio n Factor F	Porosity Exponent m	Formatio n Factor F*	Porosity Exponen t m*	Brine Saturation, fraction Sw	Resistivity Index I RI	Satura tion Expon ent n	Resisti vity Index I* RI	Satura tion Expon ent n*	Pc
	19AH	10517	22.9	0.175	0.094	16.3	1.55	26.3	1.82	1.00	1.00		1.00		0.000
										0.830	1.39	1.75	1.49	2.16	4.00
										0.695	1.74	1.52	2.03	1.95	8.00
										0.582	2.42	1.63	3.08	2.08	16.0
										0.464	3.54	1.65	5.10	2.12	32.0 64.0
										0.181	11.0	1.40	29.9	1.99	128
Additional Resisitivity	Index meaBed at 6350 psi NCS									0.181	11.1	1.41	30.4	2.00	
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.181	11.1	1.41	30.4	2.00	
	20AH	10517	8.02	0.167	0.113	16.7	1.52	29.0	1.81	1.00	1.00		1.00		0.000
										0.707	2.17	2.24	2.55	2.71	16.0
										0.563	3.11	1.98	4.14	2.47	32.0
										0.467	4.68	2.02	6.94	2.54	64.0
										0.346	8.25	1.99	14.8	2.54	128
Additional Resisitivity	Index meaBed at 6350 psi NCS									0.262	12.3	1.87	27.0	2.46	180
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.262	13.1	1.92	28.7	2.51	
	24AH	10523	0.957	0.124	0.106	20.4	1.39	34.5	1.64	1.00	1.00		1.00		0.000
										0.840	1.19	1.00	1.41	1.96	16.0
										0.696	1.56	1.24	2.09	2.04	32.0
										0.610	1.93	1.33	2.85	2.12	64.0
										0.437	2.99	1.32	5.98	2.16	128
Additional Resistivity	Index meaBed at 6350 nsi NCS									0.342	3.75	1.25	10.0	2.15	180
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.342	3.92	1.27	10.6	2.19	
	65AH	10566	1921	0.274	0.000	10.1	1.71	10.1	1.71	1.00	1.00		1.00		0.000
										0.325	5.16	1.46	5.16	1.46	1.00
										0.259	7.92	1.53	7.92	1.53	2.00
										0.201	13.9	1.64	13.9	1.64	4.00
										0.154	20.3	1.61	20.3	1.61	8.00
										0.097	80.0 154	1.91	80.0 154	1.91	128
Additional Resisitivity	Index meaBed at 6350 psi NCS									0.068	157	1.88	157	1.88	120
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.068	161	1.89	161	1.89	
	68AH	10568	6888	0.284	0.066	9.01	1.66	12.9	1.93	1.00	1.00		1.00		0.000
										0.254	11.9	1.80	22.3	2.26	1.00
										0.218	15.5	1.80	32.1	2.28	2.00
										0.172	22.0	1.76	53.9	2.26	4.00
										0.136	27.5	1.00	79.8 378	2.20	32.0
										0.044	132	1.56	996	2.21	128
Additional Resisitivity	Index meaBed at 6350 psi NCS									0.044	176	1.66	1328	2.30	
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.044	190	1.68	1435	2.33	
	74AH	10574	594	0.236	0.039	15.6	1.81	19.7	1.97	1.00	1.00		1.00		0.000
										0.596	1.44	0.700	1.64	0.951	1.00
										0.489	2.24	1.13	2.72	1.40	2.00
										0.375	3.70	1.33	4.96	1.63	8.00
										0.195	20.2	1.41	47.8	1.79	52.0 64.0
										0.114	37.6	1.67	97.2	2.11	128
Additional Resisitivity	Index meaBed at 6350 psi NCS									0.114	37.5	1.67	96.8	2.11	
Additional Resisitivity	Index meaBed at 6800 psi NCS									0.114	38.6	1.68	99.7	2.12	

C1 B-1					Saturant, p	opm:			735.0				
FORMA	TION RE	SISTIV	TTY FAC	TOR	Resistivity	of Saturar	nt, ohm-m (@ 25°C:	6.7				
AND RE	SISTIVI	IY INDI	EX		Effective (Confining S	tress, psig	:	3951.0				
					Porosity E	Exponent (n	n) [Compos	itel:	1.8				
					Y-Intercen	ot (a) [Com	ositel:		1.0				
					Seturation	Emonant	(n) [Comm		1.0				
					Saturation	Ефонент	(ii) [Compt	isnej.	1.9				
Sample Number	Sample Depth, feet	Perme ability to Air to Air mD	Porosit y, fraction	Formation Factor (FF)	Formatio n Factor (FF*)	Porosity Exponent (m)	Porosity Exponent (m*)	Brine Saturatio n, fraction Vp	Resistivit y Index (RI)	Resistiv ity Index (RI*)	Saturati on Expone nt n	Saturati on Expone nt n*	
17.0	10081	13.0	0.131	52.9	65.0	1.95	2.05	1.00	1.00	1.00	-	-	
								0.724	1.87	2.01	1.94	2.15	
								0.542	3.25	3.76	1.93	2.16	
								0.498	3.86	4.59	1.94	2.19	
								0.458	4.39	5.36	1.90	2.15	
33.0	10103	543	0.238	14.5	15.0	1.86	1.89	1.00 0.754	1.00 1.73	1.00 1.83	- 1.93	- 2.14	
								0.560	2.93	3.36	1.85	2.09	
								0.387	5.90	7.63	1.87	2.14	
								0.346	7.23	9.78	1.86	2.15	
41.0	10118	790	0.205	19.5	19.7	1.87	1.88	1.00 0.739 0.525 0.370	1.00 1.84 3.62 6.95	1.00 1.84 3.64 7.04	- 2.01 2.00 1.95	- 2.02 2.01 1.96	
								0.282	12.1	12.3	1.97	1.98	
45.0	10123	3.25	0.152	30.9	31.6	1.82	1.83	1.00 0.746 0.594 0.384 0.340	1.00 1.73 2.70 5.87 7.63	1.00 1.74 2.74 6.06 7.92	- 1.86 1.91 1.85 1.88	- 1.89 1.93 1.88 1.92	
48.0	10130	3903	0.241	12.9	13.2	1.80	1.82	1.00 0.708 0.521 0.350	1.00 1.90 3.37 6.57	1.00 1.92 3.44 6.87	- 1.85 1.86 1.79	- 1.88 1.90 1.84	

0.228

1.00

0.691

0.497

0.291

0.194

1.79

1.77

57.0 10142 9230 0.235

13.0

13.3

15.5

1.00

2.01

3.67

9.71

19.4

1.85

-

1.89

1.86

1.84

1.81

16.8

1.00

2.03

3.74

10.2

21.0

1.91

-

1.92

1.89

1.88

1.86

Pozo C2 B-2. Factor de formación e índice de resistividad

C2 B-2	Saturant, ppm:	340.0
FORMATION RESISTIVITY FACTOR	Resistivity of Saturant, ohm-m @ 25°C:	14.0
AND RESISTIVITY INDEX	Effective Confining Stress, psig:	4256.0
	Porosity Exponent (m) [Composite]:	1.8
	Y-Intercept (a) [Composite]:	1.0
	Saturation Exponent (n) [Composite]:	1.9

Sample Number	Sample Depth, feet	Permeabil ity to Air to Air mD	Porosity, fraction	Formatio n Factor (FF)	Formatio n Factor (FF*)	Porosity Exponent (m)	Porosity Exponent (m*)	Brine Saturatio n, fraction Vp	Resistivit y Index (RI)	Resistivit y Index (RI*)	Saturatio n Exponent n	Saturatio n Exponent n*
7.00	10470	3509	0.229	17.5	17.7	1.94	1.95	1.00	1.00	1.00	-	-
								0.384	7.00	7.15	2.03	2.05
								0.273	13.0	13.4	1.98	2.00
								0.218	21.6	22.6	2.02	2.05
								0.154	44.7	47.9	2.03	2.07
12.0	10484	151	0.201	16.9	19.9	1.76	1.86	1.00	1.00	1.00	-	-
								0.862	1.32	1.32	1.85	1.87
								0.740	1.74	1.75	1.83	1.85
								0.504	3.43	3.47	1.80	1.82
								0.264	10.5	10.9	1.77	1.79
25.0	10502	957	0.194	17.1	19.4	1.73	1.81	1.00	1.00	1.00	-	-
								0.729	1.76	1.84	1.79	1.93
								0.569	2.77	3.02	1.81	1.96
								0.293	8.38	10.8	1.73	1.94
								0.192	17.1	25.7	1.72	1.97
36.0	10515	406	0.172	30.0	30.2	1.03	1.04	1.00	1.00	1.00		
50.0	10515	470	0.172	50.0	50.2	1.95	1.94	0.634	2.47	2.48	1 99	1 99
								0.034	4.22	4.25	2.03	2.04
								0.492	11.5	11.7	2.05	2.04
								0.295	22.6	23.1	1.99	2.01
								0.209	22.0	23.1	1.77	2.01
56.0	10585	3537	0.203	16.9	17.7	1.77	1.80	1.00	1.00	1.00	-	-
								0.636	2.30	2.37	1.85	1.91
								0.445	4.33	4.58	1.81	1.88
								0.142	33.4	42.8	1.80	1.93
								0.112	51.1	69.9	1.80	1.94

Anexo 7. Pruebas de presión capilar

Pozo C1-24. Presiones capilares método del plato poroso

CAPILLARY PRESSURE

C1-24							Saturant Brine, mg/l:					828.40		
CAPILLARY PRE	SBE						Displac	ed fluid:				brine		
						Displacing fluid:					air			
Air Displacing Brin	ie, In-Situ Porou	us Disk Method					Effective Confining Stress, psig: 510					5100.00		
Interim Data - Eval	nterim Data - Evaluation Based On Water Out From Dean Stark MeaBement													
		Capillary PresBe	, psig:	0.00	1.00	2.00	4.00	8.00	16.00	32.00	64.00	128.00	180.00	
Plug ID	Depth, ft	Permeability to Air 400psig NCS	Porosit y, fraction			H	Brine Sat	uration,	fraction J	pore volu	me			
19AH	10516.700	22.90	0.18	1.00			0.83	0.695	0.582	0.46	0.34	0.181		
20AH	10516.900	8.02	0.17	1.00					0.707	0.56	0.47	0.346	0.262	
24AH	10522.500	0.96	0.12	1.00					0.840	0.70	0.61	0.437	0.342	
65AH	10566.450	1921.18	0.27	1.00	0.217	0.20	0.16	0.144		0.08		0.070		
68AH	10568.250	6887.86	0.28	1.00	0.325	0.26	0.20	0.154		0.10		0.068		
74AH	10574.150	593.94	0.24	1.00	0.596	0.49	0.37	0.193			0.13	0.114		

C1 B-1	Displaced Phase:	Brine
CAPILLARY PRESBE	Displacing Phase:	Oil
	Temperature, °F:	72.00
Centrifuge Method	System:	Drainage

		Capillary Pr	esBe, psig:	0.00	1.00	2.00	5.00	10.00	15.00	20.00
Plug ID	Depth, ft	Permeabili ty to Air	Porosity , fraction		I	Brine Satura	tion, fraction	pore volum	e	
17R	10080.500	11.31	0.13	1.00	0.808	0.67	0.56	0.511	0.498	0.49
33R	10102.600	494.55	0.24	1.00	0.600	0.40	0.24	0.195	0.186	0.18
41R	10117.500	867.56	0.21	1.00	0.525	0.33	0.21	0.167	0.159	0.16
45R	10123.100	5.90	0.16	1.00	0.913	0.83	0.76	0.714	0.696	0.69
48R	10129.500	4221.89	0.24	1.00	0.288	0.15	0.10	0.083	0.075	0.07
57R	10142.400	9913.42	0.24	1.00	0.170	0.11	0.07	0.053	0.050	0.05

C1 B-1	Displaced Phase:	Oil
CAPILLARY PRESBE	Displacing Phase:	Brine
	Temperature, °F:	72.00
Centrifuge Method	System:	Imbibition

' Initial Water Saturation plus Spontaneus Imbibition of Water

Capillary PresBe, psig:							-2.00	-5.00	-10.00	-15.00	-20.00
ID	Depth, ft	Permeabi lity to Air	Porosity, fraction	Initial Water Saturation Average, fraction Vp	Imbibition Water Saturation* * Average, fraction Vp		Brine Sa	turation, fr	raction pore	e volume	
17R	10080.50	11.31	0.134	0.52	0.52	0.708	0.76	0.80	0.814	0.82	0.82
33R	10102.60	494.55	0.243	0.21	0.21	0.703	0.78	0.81	0.825	0.83	0.83
41R	10117.50	867.56	0.205	0.18	0.22	0.662	0.73	0.78	0.803	0.81	0.81
45R	10123.10	5.90	0.160	0.72	0.72	0.789	0.80	0.82	0.826	0.83	0.83
48R	10129.50	4221.89	0.243	0.08	0.08	0.732	0.82	0.87	0.882	0.89	0.89
57R	10142.40	9913.42	0.245	0.05	0.09	0.740	0.78	0.80	0.810	0.81	0.81

Pozo C2 B-2. Presiones capilares método de centrífuga

C2 B-2			Displaced Phase	2:	Brine			
CAPILLARY PRESUR		Displacing Phas	e:	Oil				
			Temperature, °I	7:	72.00			
Centrifuge Method			System:		Drainage			
	Capillary PresBe, psig:	0.00	1.00	2.00	5.00	10.00	15.00	20.00

Plug ID	Depth, ft	Permeability to Air	Porosity, fraction			Brine Satura	tion, fraction	pore volume		
7.00	10470	3920	0.237	1.00	0.568	0.277	0.146	0.115	0.108	0.103
12.0	10484	164	0.207	1.00	0.804	0.523	0.349	0.298	0.284	0.278
30.0	10506	708	0.184	1.00	0.676	0.345	0.188	0.153	0.144	0.139
36.0	10515	536	0.182	1.00	0.570	0.324	0.196	0.171	0.166	0.162

C2 B-2	Displaced Phase:	Oil	
CAPILLARY PRESBE	Displacing Phase:	Brine	
	Temperature, °F:	72.00	
Centrifuge Method	System:	Imbibition	
' Initial Water Saturation plus Spontaneus Imbibition	of Water		

Capillary PresBe, psig:					-1.00	-2.00	-5.00	-10.00	-15.00	-20.00	
Plug ID	Depth, ft	Permeabilit y to Air	Porosity, fraction	Initial Water Saturation Average, fraction Vp	Imbibition Water Saturation ** Average, fraction Vp	Brine Saturation, fraction pore volume					
7.00	10470	3920	0.237	0.123	0.123	0.727	0.773	0.799	0.810	0.812	0.813
12.0	10484	164	0.207	0.306	0.352	0.700	0.736	0.763	0.771	0.772	0.773
30.0	10506	708	0.184	0.157	0.157	0.673	0.740	0.776	0.797	0.801	0.802
36.0	10515	536	0.182	0.178	0.178	0.680	0.743	0.784	0.798	0.803	0.805

Pozo C2 A-3. Presiones capilares método de centrífuga

C2 A-3	Oil Type	Isopar-M	
CAPILLARY PRESBE	Oil density (g/cc)	0.79	
Centrifuge Method	Water density (g/cc)	1.00	
* Average Brine Saturation plus Imbibidated B	30°C		

* Average Brine Saturation plus Imbibidated Brine Spo Test temperature

** Saturations (Sw Endfase) Corrected by Forbe: Confining presBe

(D) Drenaje (I) Imbibición					Oil Displacing Brine, (D)		Brine Displacing Oil, (I)			
Plug ID	Depth, ft	Porosity, fraction	Permeability to Air (mD)	Permeability Klikenberg (mD)	Brine Saturation, fraction of Vp	End Face Birne Saturation **fraction	Avg. Brine Saturation by Imbibition *fraction	Brine Saturation fraction of Vp	End Face Birne Saturation **fraction	Oil Saturation fraction Sor
95-S	10629	0.161	11.6	10.8	0.371	0.335	0.523	0.784	0.802	0.216
89-S	10635	0.174	24.7	23.5	0.257	0.231	0.285	0.798	0.826	0.202
82-S	10638	0.175	156	153	0.165	0.151	0.175	0.791	0.806	0.209
77-S	10643	0.204	1056	1046	0.092	0.069	0.096	0.790	0.825	0.210
71-S	10649	0.223	3140	3122	0.124	0.101	0.140	0.877	0.891	0.123
50-S	10667	0.196	1668	1656	0.139	0.109	0.164	0.807	0.822	0.193
45-S	10672	0.224	3511	3492	0.084	0.068	0.092	0.822	0.845	0.178
32-S	10682	0.230	6625	6598	0.077	0.068	0.084	0.760	0.779	0.240
19-S	10693	0.199	654	647	0.202	0.193	0.207	0.776	0.791	0.224
17-S	10694	0.191	1310	1300	0.112	0.108	0.125	0.733	0.748	0.267
12-S	10700	0.125	9.41	8.71	0.403	0.387	0.410	0.788	0.826	0.212

Amb

Anexo 8. Análisis fisicoquímico de agua del pozo C2 A-1

Well Company Client Sample Number Sampled by Client Sampled From Analysed Our Sample Number	Pozo: C2 A-1 N.R. Job Ref : 1703021 From 2017-03-03 to 2017-03-17 52134-2016-3389
Appearance before filtration	Slightly hazy colourless water
Appearance after filtration	Clear colourless water
Conductivity, microSiemens/cm	3510.00
Total dissolved solids (mg litre-1)	1752
Specific gravity at 60°F	1.0015
Refractive Index (nD @ 24°C)	1.3325
Determined Resistivity (ohm.metre at 77°F)	2.849
pH at 25°C	4.1
-	
Components	mg.litre-1 meq.litre-1

Components	mg.litre-1	meq.litre-1
CATIONS		
Sodium	454	10.7
Botassium	404	19.7
Calcium	131.0	6.5
Magnesium	10.0	0.8
Barium	0.6	0.0
Strontium	7.5	0.0
Total Iron	1.80	0.1
Manganese	0.74	0.0
		29.3
ANIONS		
Chloride	983	27.7
Sulphate	88.0	1.8
Bicarbonate	0.0	0.0
Carbonate	0.0	0.0
Hydroxide	0.0	0.0
		29.6
HARDNESS		
Calcium	327.5	16.3
Magnesium	41	3.4
Total	0.00	19.7
PhenoInthalein	0	
Total	121 53	
Total	151.55	
Salinity Total	1702 ma/l	
Saturation Langelier	-3.1 @ 25 °C	
Saturation Riznar	10.2 @ 25 °C	
For the Langelier Index:	For th	e Ryznar Index:
LI > 0 Water is Scale Forming	RI < 5	.5 Heavy Scale will Form
LI = 0 Water is Neutral	RI = 5.5	to 6.2 Scale will Form
LI < 0 Water is Corrosive	RI = 6.2 t	o 6.8 Water is Neutral
	RI = 6.8 t	o 8.5 Water is Corrosive

Notes:

Core Laboratories (Canada Ltd.) Advanced Technology Center

A1