Architecture
Economic and administrative sciences
- Economy
- Business Administration
- Statistics and Actuarial Sciences
- International Business
- Project Management Specialization
- Business Management Specialization
- ???jsp.home.menu-lumieres.ehuman???
- Occupational Health and Safety Management Specialization
- International Business and Economic Integration Specialization
- Master MBA Administration
- Master Degree in Human Talent Management
Sciences and Humanities
Engineering
- Industrial engineering
- Mechanical Engineering
- Petroleum engineering
- Chemical engineering
- Environmental engineering
- Energy Engineering
- Mechatronics Engineering
- Quality Management Specialization
- Environmental Management Specialization
- Master in Environmental Management for Competitiveness
- Master Degree in Comprehensive Quality and Productivity Management
- Reservoir Engineering Master
- Master in Advanced Hydrocarbon Recovery
Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11839/7832
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rivas Tovar, Marco Fidel | - |
dc.date.accessioned | 2020-04-14T14:43:25Z | - |
dc.date.available | 2020-04-14T14:43:25Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | APA 7th - Rivas Tovar, M. F. (2018) Ajuste de Curvas [Documento presentado para publicación]. Departamento de Matemáticas. Fundación Universidad de América. Retrieved from: https://hdl.handle.net/20.500.11839/7832 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11839/7832 | - |
dc.description | The objective of this chapter is to fit a curve according to a series of data presented in a table, in order to be able to make internal estimates to the table, what we call interpolation, we will also seek to make external estimates to the data tables. which we call extrapolations. As a first instance we will present the so-called placement polynomials, which are used to interpolate, among them we highlight the Newton and Lagrange polynomials. Later we will explain the so-called least squares polynomials, which in addition to interpolating are also extrapolating. Finally, we will make adjustments to non-polynomial models, for this we will make use of the process called linearization. | spa |
dc.description.abstract | El presente capitulo tiene como objetivo ajustar una curva de acuerdo con una serie de datos presentados en una tabla, con el objeto de poder realizar estimaciones internas a la tabla, lo que denominamos interpolación, así mismo buscaremos hacer estimaciones externas a las tablas de datos la cual denominamos extrapolaciones. Como primera instancia presentaremos los llamados polinomios de colocación, los cuales son utilizados para interpolar, entre ellos destacamos los polinomios de Newton y Lagrange. Posteriormente explicaremos los llamados polinomios de mínimos cuadrados, los cuales además de interpolantes también son extrapolantes. Por último, haremos ajustes a modelos no polinomiales, para ello haremos uso del proceso llamado linealización. | spa |
dc.language.iso | es | spa |
dc.publisher | Ediciones Universidad de América | spa |
dc.rights | Atribución – No comercial | spa |
dc.subject | Polinomios | spa |
dc.subject | Interpolación | spa |
dc.subject | Extrapolación | spa |
dc.subject | Polynomials | spa |
dc.subject | Interpolation | spa |
dc.subject | Extrapolation | spa |
dc.title | Ajuste de Curvas | spa |
dc.title.alternative | Curve Fit | spa |
dc.type | Book chapter | spa |
Appears in Collections: | Departamento de Matemáticas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
794118-2018.pdf | 305.52 kB | Adobe PDF | View/Open | |
CARTA DE CESIÓN DE DERECHOS Y AUTORIZACIÓN DE PUBLICACIÓN.pdf Access Restricted | 336.5 kB | Adobe PDF | View/Open Request a copy |