Arquitectura
Economía
Ciencias y humanidades
Ingenierías

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.11839/8269
Título: Implementación de un modelo predictivo de machine learning para la estimación de los parámetros óptimos de la ROP y la MSE en la sección 8½’’ y 12 ¼’’ para los pozos perforados con motor de fondo en el Campo Yarigui – Cantagallo durante el 2019
Otros títulos: Implementation of a machine learning predictive model for the estimation of the optimal parameters of the ROP and MSE in section 8½ ’’ and 12 ¼ ’’ for the drilled wells with downhole motor in Yarigu - Cantagallo field during 2019
Autor(es): Tabares Rodríguez, Nathalia
Tobar Castilla, Daniel
Director de tesis: Gómez Alba, Sebastián Alejandro
Tipo de licencia: Atribución – No comercial
Palabras clave: Energía mecánica específica;Modelo predictivo;Perforación de pozos;Specific mechanical energy;Predictive model;Well drilling;Tesis y disertaciones académicas
Fecha de publicación: 10-feb-2021
Editorial: Fundación Universidad de América
Resumen: La implementación de un modelo predictivo de machine learning para la estimación de los parámetros óptimos de perforación surge por la necesidad de la industria de migrar hacia la ciencia de datos buscando optimizar procesos. A través de este proyecto de investigación se generó una base de datos correspondiente a los pozos perforados con motor de fondo durante el 2019 en el campo en mención, la cual fue sometida a un análisis exploratorio de datos (EDA). Seguido a esto, se realizó división de la misma para la estandarización y prueba del modelo predictivo. Una vez es realizada dicha división se implementó un algoritmo de aprendizaje automático supervisado como lo es Random Forest Regressor, teniendo como variables de entrada las revoluciones por minuto (RPM) de superficie y de fondo, el peso sobre la broca (WOB), el caudal (Q), el torque (TQ) y la información correspondiente a los topes de las formaciones geológicas perforadas, y se obtuvo como variables de salida la tasa de penetración (ROP) y la energía mecánica específica (MSE).
Abstract: The implementation of a predictive machine learning model to estimate optimal drilling parameters arises from the need for the industry to migrate towards data science seeking to optimize processes. Through this research project, a database corresponding to the wells drilled with a downhole motor during 2019 in the aforementioned field was generated, which was subjected to an exploratory data analysis (EDA). Following this, it was divided for standardization and testing of the predictive model. Once this division was made, a supervised automatic learning algorithm was implemented such as Random Forest Regressor, having as input variables the revolutions per minute (RPM) of the surface and the bottom, the weight on the bit (WOB), the flow rate. (Q), the torque (TQ) and the information corresponding to the tops of the drilled geological formations, and the penetration rate (ROP) and the specific mechanical energy (MSE) were obtained as output variables.
URI: https://hdl.handle.net/20.500.11839/8269
Citación: APA 7th - Tabares Rodríguez, N. y Tobar Castilla, D. (2021) Implementación de un modelo predictivo de machine learning para la estimación de los parámetros óptimos de la ROP y la MSE en la sección 8½’’ y 12 ¼’’ para los pozos perforados con motor de fondo en el Campo Yarigui – Cantagallo durante el 2019. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8269
Aparece en las colecciones:Trabajos de grado - Ingeniería de Petróleos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
5152358-2021-1-IP.pdf5.86 MBAdobe PDFVisualizar/Abrir
CARTA DE CESIÓN DE DERECHOS Y AUTORIZACIÓN PARA PUBLICACIÓN.pdf
Accesso Restringido
146.85 kBAdobe PDFVisualizar/Abrir    Request a copy


Este ítem está sujeto a una licencia Creative Commons Creative Commons