Arquitectura
Economía
- Economía
- Administración de Empresas
- Estadística y Ciencias Actuariales
- Negocios internacionales
- Especialización Gerencia de Proyectos
- Especialización Gerencia de Empresas
- Especialización Gerencia del Talento Humano
- Especialización Gestión de la Seguridad y Salud en el Trabajo
- Especialización Negocios Internacionales e Integración Económica
- Maestría MBA Administración
- Maestría Gerencia del Talento Humano
Ciencias y humanidades
Ingenierías
- Ingeniería Industrial
- Ingeniería Mecánica
- Ingeniería de Petróleos
- Ingeníeria Química
- Ingeniería Ambiental
- Ingeniería en Energías
- Ingeniería Mecatrónica
- Especialización Gerencia de la Calidad
- Especialización Gestión Ambiental
- Maestría en Gestión Ambiental para la Competitividad
- Maestría Gerencia Integral de la calidad y Productividad
- Maestría Ingeniería de Yacimientos
- Maestría en Recuperación Avanzada de Hidrocarburos
Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.11839/8274
Título: | Optimización en la planeación de pozos por medio de la predicción de tiempos, costos y NPT´S, aplicando un modelo de machine learning para la campaña de perforación de Castilla y Castilla norte 2020 |
Otros títulos: | Optimization in well planning through the prediction of times, costs and NPT'S, applying a machine learning model for the 2020 Castilla and Castilla norte drilling campaign |
Autor(es): | Martínez Alonso, Juan David Poveda Cruz, Johan Steven |
Director de tesis: | Fernández Barrero, Nelson |
Tipo de licencia: | Atribución – No comercial – Sin Derivar |
Palabras clave: | Matriz complejidad;Método supervisado;Predicción de tiempos;Complexity matrix;Supervised method;Time prediction;Tesis y disertaciones académicas |
Fecha de publicación: | 15-feb-2021 |
Editorial: | Fundación Universidad de América |
Resumen: | Actualmente la compañía Ecopetrol S.A, tiene en cuenta los datos técnicos-históricos tales como los que se encuentran almacenados en OpenWells y Power BI, para evaluar el desempeño durante la fase de perforación de los pozos semana a semana, en vez de aprovechar dicha información junto con las variables implicadas en la matriz de complejidad, para optimizar la planeación de pozos mediante la implementación de un modelo predictivo generando así un valor agregado sobre la información almacenada. Considerando lo anterior, el presente trabajo de grado se realizó con el fin de optimizar la planeación de pozos para la campaña de perforación de Castilla y Castilla Norte 2020 al aplicar los modelos de machine Learning seleccionados, los cuales predicen días costos y NPT’s asociados a problemas en hueco abierto. |
Abstract: | Currently the company Ecopetrol SA, takes into account the technical-historical data such as those stored in OpenWells and Power BI, to evaluate the performance during the drilling phase of the wells week by week, instead of taking advantage of this information together with the variables involved in the complexity matrix, to optimize well planning through the implementation of a predictive model, thus generating added value on the stored information. Considering the above, the present degree work was carried out in order to optimize well planning for the 2020 Castilla y Castilla Norte drilling campaign by applying the selected machine Learning models, which predict cost days and NPT's associated with problems in open hole. Therefore, a methodology aimed at the implementation of three supervised machine learning models was designed, based on the information from the 2019 Castilla y Castilla Norte drilling campaign. Subsequently, the prediction of the models was implemented and evaluated. for the same field in 2020. |
URI: | https://hdl.handle.net/20.500.11839/8274 |
Citación: | APA 7th - Martínez Alonso, J. D. y Poveda Cruz, J. S. (2021) Optimización en la planeación de pozos por medio de la predicción de tiempos, costos y NPT´S, aplicando un modelo de machine learning para la campaña de perforación de Castilla y Castilla norte 2020. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8274 |
Aparece en las colecciones: | Trabajos de grado - Ingeniería de Petróleos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
5152276-2021-1-IP.pdf | 2.45 MB | Adobe PDF | Visualizar/Abrir | |
CARTA DE CESIÓN DE DERECHOS Y AUTORIZACIÓN PARA PUBLICACIÓN.pdf Accesso Restringido | 183.68 kB | Adobe PDF | Visualizar/Abrir Request a copy |